当前位置: 首页 > news >正文

深度学习笔记_4、CNN卷积神经网络+全连接神经网络解决MNIST数据

1、首先,导入所需的库和模块,包括NumPy、PyTorch、MNIST数据集、数据处理工具、模型层、优化器、损失函数、混淆矩阵、绘图工具以及数据处理工具。

import numpy as np
import torch
from torchvision.datasets import mnist
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torch import nn
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import csv
import pandas as pd

2、设置超参数,包括训练批次大小、测试批次大小、学习率和训练周期数。

# 设置超参数
train_batch_size = 64
test_batch_size = 64
learning_rate = 0.001
num_epochs = 10

3、创建数据转换管道,将图像数据转换为张量并进行标准化。

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5], [0.5])
])

4、下载和预处理MNIST数据集,分为训练集和测试集。

# 下载和预处理数据集
train_dataset = mnist.MNIST('data', train=True, transform=transform, download=True)
test_dataset = mnist.MNIST('data', train=False, transform=transform)

5、创建用于训练和测试的数据加载器,以便有效地加载数据。

# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)

 6、定义了一个简单的CNN模型,包括两个卷积层和两个全连接层。

# 定义CNN模型
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=5)self.conv2 = nn.Conv2d(32, 64, kernel_size=5)self.fc1 = nn.Linear(1024, 256)self.fc2 = nn.Linear(256, 10)def forward(self, x):x = F.relu(F.max_pool2d(self.conv1(x), 2))x = F.relu(F.max_pool2d(self.conv2(x), 2))x = x.view(x.size(0), -1)x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1)

7、初始化模型、优化器和损失函数。

# 初始化模型、优化器和损失函数
model = CNN()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()

8、准备用于记录训练和测试过程中损失和准确率的列表。

# 记录训练和测试过程中的损失和准确率
train_losses = []
test_losses = []
train_accuracies = []
test_accuracies = []

9、进入训练循环,遍历每个训练周期。在每个训练周期内,进入训练模式,遍历训练数据批次,计算损失、反向传播并更新模型参数,同时记录训练损失和准确率。

for epoch in range(num_epochs):model.train()train_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()train_loss += loss.item()# 计算训练准确率_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 计算平均训练损失和训练准确率train_loss /= len(train_loader)train_accuracy = 100. * correct / totaltrain_losses.append(train_loss)train_accuracies.append(train_accuracy)  # 记录训练准确率# 测试模型model.eval()test_loss = 0.0correct = 0all_labels = []all_preds = []with torch.no_grad():for data, target in test_loader:output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()all_labels.extend(target.numpy())all_preds.extend(pred.numpy())

10、在每个训练周期结束后,进入测试模式,遍历测试数据批次,计算测试损失和准确率,同时记录它们。打印每个周期的训练和测试损失以及准确率。

# 计算平均测试损失和测试准确率test_loss /= len(test_loader)test_accuracy = 100. * correct / len(test_loader.dataset)test_losses.append(test_loss)test_accuracies.append(test_accuracy)print(f'Epoch [{epoch + 1}/{num_epochs}] -> Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.2f}%, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.2f}%')

11、losses、acces、eval_losses、eval_acces保存到TXT文件

# 保存训练结果
data = np.column_stack((train_losses,test_losses,train_accuracies, test_accuracies))
np.savetxt("results.txt", data)

12、绘制Loss、ACC图像

# 绘制Loss曲线图
plt.figure(figsize=(10, 2))
plt.plot(train_losses, label='Train Loss', color='blue')
plt.plot(test_losses, label='Test Loss', color='red')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Loss Curve')
plt.grid(True)
plt.savefig('loss_curve.png')
plt.show()# 绘制Accuracy曲线图
plt.figure(figsize=(10, 2))
plt.plot(train_accuracies, label='Train Accuracy', color='red')  # 绘制训练准确率曲线
plt.plot(test_accuracies, label='Test Accuracy', color='green')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy Curve')
plt.grid(True)
plt.savefig('accuracy_curve.png')
plt.show()

 

 13、绘制混淆矩阵图像

# 计算混淆矩阵
confusion_mat = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(10, 8))
sns.heatmap(confusion_mat, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.savefig('confusion_matrix.png')
plt.show()

 

http://www.lryc.cn/news/182293.html

相关文章:

  • 高效的开发流程搭建
  • 浅谈OV SSL 证书的优势
  • 一篇博客学会系列(3) —— 对动态内存管理的深度讲解以及经典笔试题的深度解析
  • 【C++ techniques】虚化构造函数、虚化非成员函数
  • 蓝牙核心规范(V5.4)11.6-LE Audio 笔记之初识音频位置和通道分配
  • mysql双主+双从集群连接模式
  • 嵌入式中如何用C语言操作sqlite3(07)
  • RandomForestClassifier 与 GradientBoostingClassifier 的区别
  • 计组——I/O方式
  • jsbridge实战2:Swift和h5的jsbridge通信
  • 集合原理简记
  • 机器学习的超参数 、训练集、归纳偏好
  • Leetcode1071. 字符串的最大公因子(三种方法,带详细解析)
  • 如何像人类一样写HTML之图像标签,超链接标签与多媒体标签
  • 1300*C. Rumor(并查集贪心)
  • python实用小代码(数据分析向)
  • 【oncmdmsg 鼠标】2023/8/19 上午9:50:14
  • 插入排序:简单而有效的排序方法
  • OpenGL之光照贴图
  • 隐私交易成新刚需,Unijoin 凭什么优势杀出重围?
  • 小谈设计模式(12)—迪米特法则
  • Foxit PDF
  • 《Python趣味工具》——ppt的操作(刷题版)
  • 实战型开发--3/3,clean code
  • 家用无线路由器如何用网线桥接解决有些房间无线信号覆盖不好的问题(低成本)
  • 【Golang】网络编程
  • 使用策略模式优化多重if/else
  • 逆强化学习
  • postgresql新特性之Merge
  • 【注解】注解解析与应用场景