当前位置: 首页 > news >正文

卷积神经网络学习(一)

CNN应用对象是图像,CNN可被应用于的任务:
1、分类(classification):对图像按其中的物体进行分类,如图像中有人与猫,则图像可分为两类。
2、目标检测(object detection):即分类+定位(localization),不光要进行物体分类,还要用方框标识出物体。
3、语义分割(semantic segmentation):对图像的每个像素进行分类。是目标检测的更进一步,不光要进行物体分类,还会很精细的标识出物体(用物体的所有像素来标识物体,而不是用方框)。
4、实例分割(instance segmentation):语义分割的更进一步。对同一类物体的不同个体,语义分割不进行区分,实例分割可以区分。
5、全景分割(panoptic segmentation):实例分割的更进一步。对背景也进行分割,如背景中的树,白云,蓝天也都被分割。

福岛邦彦(Kunihiko Fukushima)于1979年提出神经认知机,由于这项工作他于2021年获得了鲍尔奖,获奖理由:通过发明第一个深度卷积神经网络「Neocognitron」将神经科学原理应用于工程的开创性研究,这是对人工智能发展的关键贡献。
神经认知机中包含了卷积层与池化层。

1989年,Yann LeCun提出将反向传播应用于卷积神经网络。
1998年,Yann LeCun提出了LeNet-5用于手写数字识别。(第一个现代概念上的CNN)

2012年,Alex Krizhevsky提出了AlexNet,帮助其赢得了大规模视觉识别挑战赛(ILSVRC)。
与之前的卷积网络相比,其层数更多(深),采用GPU训练模型,ReLU激活函数,DropOut防止过拟合,局部响应归一化(Local Response Normalization)使下一层的输入更合理。

CNN由三种层组成:卷积层,池化层,全连接层。前两种用于提取特征,后一种用于特征分类。

几篇经典论文

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological cybernetics, 20(3-4), 121-136.
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.LeCun, Y. (1989). Generalization and network design strategies. Connectionism in perspective, 19(143-155), 18.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

三通道图像的卷积运算:
O = f ( I 1 ∗ K 1 + I 2 ∗ K 2 + I 3 ∗ K 3 + b ) O = f(I_1 * K_1 + I_2 * K_2 + I_3 * K_3 + b) O=f(I1K1+I2K2+I3K3+b)
I i I_i Ii为图像的一个通道, K i K_i Ki为卷积核, ∗ * 为卷积运算, b b b为偏置是一个标量, f f f为激活函数, O O O为输出(特征图)。

卷积层常采用ReLU激活函数: y = m a x ( x , 0 ) y = max(x,0) y=max(x,0)
ReLU是非线性函数,但其可以求导: y ′ = 0 , x < 0 ; x , x ≥ 0 y' = 0, x<0; x, x\geq 0 y=0,x<0;x,x0,因此可进行反向传播。

池化也称下采样,用于缩减特征图的尺寸且保留特征图中最重要的信息。
池化操作常用的包括:最大,平均。
池化层不采用激活函数。

最后一层全连接层常采用softmax函数: y ⃗ = s o f t m a x ( x ⃗ ) \vec{y} = softmax(\vec{x}) y =softmax(x )
x ⃗ , y ⃗ \vec{x},\vec{y} x ,y 为向量, y i = e x i Σ k e x k y_i = \frac{e^{x_i}}{\Sigma_k e^{x_k}} yi=Σkexkexi
可以看出与ReLU不同,在计算一个元素时,还要考虑其他元素的大小。
输入 [ 1 , 2 , 3 , 4 , 5 ] [1,2,3,4,5] [1,2,3,4,5],输出大约为 [ 0.01 , 0.03 , 0.08 , 0.2 , 0.6 ] [0.01,0.03,0.08,0.2,0.6] [0.01,0.03,0.08,0.2,0.6](输出总和为1,由于我这里近似表示导致总和非1)
softmax函数可导, i = j i=j i=j时, d y i d x j = y i − y i 2 \frac{dy_i}{d x_j} = y_i - y_i^2 dxjdyi=yiyi2 i ≠ j i\neq j i=j时, d y i d x j = − y i ⋅ y j \frac{dy_i}{d x_j} = -y_i\cdot y_j dxjdyi=yiyj
手推softmax的求导 - Mr.Jian的文章 - 知乎 https://zhuanlan.zhihu.com/p/419862067

损失函数可采用交叉熵: L o s s = Σ i ( y i ⋅ l o g y i ) Loss = \Sigma_i (y_i \cdot log y_i) Loss=Σi(yilogyi)(对应最大似然估计)

分类任务的CNN:VGG-16,ResNets,Inception(GoogLeNet)
目标检测任务的CNN:Faster R-CNN,YOLO(you only look once)
语义分割任务的CNN:FCN,U-Net,Mask R-CNN

http://www.lryc.cn/news/178831.html

相关文章:

  • 使用KEIL自带的仿真器仿真遇到问题解决
  • 4700 万美元损失,Xn00d 合约漏洞攻击事件分析
  • 第5讲:v-if与v-show的使用方法及区别
  • C理解(一):内存与位操作
  • ESP8266使用记录(四)
  • 云原生Kubernetes:K8S安全机制
  • 【数据结构】归并排序、基数排序算法的学习知识点总结
  • 【C++】C++模板进阶 —— 非类型模板参数、模板的特化以及模板的分离编译
  • HTML的相关知识
  • 基于微信小程的流浪动物领养小程序设计与实现(源码+lw+部署文档+讲解等)
  • Java后端接口编写流程
  • 【问题记录】解决“命令行终端”和“Git Bash”操作本地Git仓库时出现 中文乱码 的问题!
  • 软考高级之系统架构师之软件需求工程
  • 使用 Velocity 模板引擎的 Spring Boot 应用
  • mysql的mvcc详解
  • FreeRTOS两个死机原因(中断调用接口异常)【杂记】
  • 【AI视野·今日Robot 机器人论文速览 第四十三期】Thu, 28 Sep 2023
  • 批量快捷创建新数组的几种方式
  • 单目标应用:基于沙丁鱼优化算法(Sardine optimization algorithm,SOA)的微电网优化调度MATLAB
  • 基于Halo搭建个人博客
  • DPDK系列之三十一DPDK的并行机制简介
  • 【Java】复制数组的四种方式
  • 设计模式5、原型模式 Prototype
  • 驱动挂载物理页代码示例
  • 【新版】系统架构设计师 - 层次式架构设计理论与实践
  • 大数据Flink(九十):Lookup Join(维表 Join)
  • Docker方式创建MySQL8的MGR集群
  • 问 ChatGPT 关于GPT的事情:扩展篇
  • Spring Boot 集成 MinIO 实现文件上传、下载和删除
  • Polygon Miden交易模型:Actor模式 + ZKP => 并行 + 隐私