当前位置: 首页 > news >正文

C理解(一):内存与位操作

本文主要探讨C语言的内存和为操作操作相关知识。

冯诺依曼结构和哈佛结构
        冯诺依曼结构:数据和代码放在一起,便于读取和修改,安全性低
        哈佛结构是:数据和代码分开存放,安全性高,读取和修麻烦

内存
        内存是用来存储全局变量、局部变量等变量
        操作系统把内存分成4kb页面以为单位来管理

        页面内以字节为单位通过管理接口(API)管理内存

内存属性
        内存属性:地址和空间
        空间:内存单元大小
        地址:内存条上的实际位置(物理地址)和逻辑地址(地址编号)一一对应
        内存单元类似方格,方格的位置为物理地址,方格的编号为逻辑地址,方格的空间为内存单元空间大小

内存和数据类型
        int类型与CPU数据位宽相同,32位的CPU的位宽是32位,int类型为32位,占4字节
        数据类型表示内存单元长度和解析方式
        int读取过程中,从起始处读取4个字节单元,再int的方式解析读取的内容

内存对齐
        内存对其访问效率高
        int类型变量对齐与非对齐
            对齐:    0 1 2 3    
            非对齐: 1 2 3 4    

变量访问内存
        int a;编译器申请int类型内存内存单元,把a和内存单元绑定
        a = 5;内存单元空间中写入5
        a += 4; 编译器先读a值再加4,最后重写写入到内存单元。


指针间接访问内存
        int a;int *p;
        a和p代表内存地址,内存地址长度和解析方法不同
        a为int型,长度是4字节,解析方式是int
        p是int *类型,长度是4字节,解析方法是int *

数组访问内存
        int b[10];
        编译器分配40个字节长度给b,首元素地址和b绑定
        每个元素类型都是int,长度是4字节
        第一个字节地址为首地址,首元素a[0]地址为首地址

栈(stack)
        自动分配和回收内存
        内存空间可反复使用
        内存使用完不会清理,使用前需初始化
        操作系统固定了栈大小,变量定义防止栈溢出
        栈变量指针空间是临时的,同一变量每次初始化使用的是不同的内存地址空间
  
堆(heap)
        堆管理内存分配灵活,按需分配
        内存按需申请使用,使用完释放
        内存空间可反复使用
        内存使用完不会清理,使用前需初始化

内存申请
                void *malloc(size_t size);
                void *calloc(size_t nmemb, size_t size);  // nmemb个单元,每个单元size字节
                void *realloc(void *ptr, size_t size);    // 改变原来申请的空间的大小的
                malloc用来申请内存,返回void *类型指针,malloc返回申请内存空间首地址,失败返回NULL
                malloc只分配内存空间,空间存储的数据类型不做定义

        代码段:程序中可执行部分
        数据段(数据区、静态数据区、静态区):初始化为非零的全局变量,静态局部变量
        bss段(ZI段):初始化为0或未初始化的全局变量

特殊数据
        char *p = "linux";字符串分配在代码段,是常量不是变量
        单片机编译过程中将const修饰变量放在代码段实现不能修改
        gcc编译器将const修饰的变量放在数据段,只是默认不可修改,实际可通过地址访问修改

(32位操作系统)
        位(1bit) 
        字节(8bit) 
        半字(16bit)  
        字(32bit)

位操作
        位操作:与& 或| 取反~ 异或^ 左移<< 右移>>
        位清0 : & 0
        位置1 : | 1
        位取反 : ^ 1
        特定位设置
                #define SET_NTH_BIT(x, n)  (x | ((1U)<<(n-1)))
        特定位清除
                #define CLEAR_NTH_BIT(x, n) (x & ~((1U)<<(n-1)))
        截取特定位
                #define GETBITS(x, n, m) ((x & ~(~(0U)<<(m-n+1))<<(n-1)) >> (n-1))

demo:
        位清除,设置,截取练习

#include <stdio.h>int main()
{int a = 0x8a66;//设置bit3a |= (1<<3);printf("bit3 set :%x\n",a);//设置bit3 ~ bit8a |= (0x1f << 3);printf("bit3-8 set :%x\n",a);//清除bit5a  &= ~(1 << 5);printf("bit5 clear :%x\n",a);//清除bit6 ~ bit12a &= ~(0x3f << 6);printf("bit6-12 clear :%x\n",a);//设置bit9 ~ bit14为9a &= ~(0x1f << 9);a |= (12 << 9);printf("set 12 in bit9-14 :%x\n",a);//bit6 ~ bit12 加9,bit4 ~ bit7 加7int tmp = ((a & (0x3f << 6)) >> 6) + 9;a = (a & ~(0x3f << 6)) | (tmp << 6);tmp = ((a & (0xf << 1)) >> 1 ) + 7;a = (a & ~(0xf << 1)) | (tmp << 1);printf("bit6-12 + 9 and bit1-4 +7 :%x\n",a);return 0;
}

结果示例:

http://www.lryc.cn/news/178826.html

相关文章:

  • ESP8266使用记录(四)
  • 云原生Kubernetes:K8S安全机制
  • 【数据结构】归并排序、基数排序算法的学习知识点总结
  • 【C++】C++模板进阶 —— 非类型模板参数、模板的特化以及模板的分离编译
  • HTML的相关知识
  • 基于微信小程的流浪动物领养小程序设计与实现(源码+lw+部署文档+讲解等)
  • Java后端接口编写流程
  • 【问题记录】解决“命令行终端”和“Git Bash”操作本地Git仓库时出现 中文乱码 的问题!
  • 软考高级之系统架构师之软件需求工程
  • 使用 Velocity 模板引擎的 Spring Boot 应用
  • mysql的mvcc详解
  • FreeRTOS两个死机原因(中断调用接口异常)【杂记】
  • 【AI视野·今日Robot 机器人论文速览 第四十三期】Thu, 28 Sep 2023
  • 批量快捷创建新数组的几种方式
  • 单目标应用:基于沙丁鱼优化算法(Sardine optimization algorithm,SOA)的微电网优化调度MATLAB
  • 基于Halo搭建个人博客
  • DPDK系列之三十一DPDK的并行机制简介
  • 【Java】复制数组的四种方式
  • 设计模式5、原型模式 Prototype
  • 驱动挂载物理页代码示例
  • 【新版】系统架构设计师 - 层次式架构设计理论与实践
  • 大数据Flink(九十):Lookup Join(维表 Join)
  • Docker方式创建MySQL8的MGR集群
  • 问 ChatGPT 关于GPT的事情:扩展篇
  • Spring Boot 集成 MinIO 实现文件上传、下载和删除
  • Polygon Miden交易模型:Actor模式 + ZKP => 并行 + 隐私
  • Java流的体系结构(二)
  • python计算阶层
  • 前端架构师之01_ES6_基础
  • 银行卡号识别