当前位置: 首页 > news >正文

回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前5列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE多指标评价。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测是一种基于机器学习和集成学习的预测方法,其主要思想是将随机森林和AdaBoost算法相结合,通过多输入单输出回归模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估,包括平均绝对误差(MAE)等指标。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/178793.html

相关文章:

  • 最小生成树 | 市政道路拓宽预算的优化 (Minimum Spanning Tree)
  • Java实现使用多线程,实现复制文件到另一个目录,起不一样的名字,创建100万个数据
  • uni-app:canvas-图形实现1
  • 【算法分析与设计】动态规划(下)
  • 计算机图像处理-均值滤波
  • FreeRTOS入门教程(空闲任务和钩子函数及任务调度算法)
  • Javascript真的是10天内做出来的吗?
  • picoctf_2018_got_shell
  • 作用域 CSS 回来了
  • 简述ceph文件储存系统
  • 计算机图像处理:椒盐噪声和高斯噪声
  • SQL SELECT 子查询与正则表达式
  • Package vips was not found in the pkg-config search path的解决方案
  • Vue封装全局SVG组件
  • 课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
  • Docker-Windows安装使用
  • 在Windows11上安装ubuntu虚拟机
  • 【微服务】spring 控制bean加载顺序使用详解
  • python-切换镜像源和使用PyCharm进行第三方开源包安装
  • tp6 + swagger 配置文档接口
  • 试图一文彻底讲清 “精准测试”
  • Visual Studio 删除行尾空格
  • LeetCode_BFS_中等_1926.迷宫中离入口最近的出口
  • 开源Windows12网页版HTML源码
  • vscode中使用指定路径下的cmake
  • 复杂度分析
  • Linux安装jrockit-jdk1.6.0_29-R28.2.0-4.1.0-linux-x64
  • 7.2 怎样定义函数
  • Chrome扩展V2到V3的变化
  • lock、tryLock、lockInterruptibly有什么区别?