当前位置: 首页 > news >正文

性能优化实战使用CountDownLatch

1.分析问题

原程序是分页查询EventAffinityScoreDO表的数据,每次获取2000条在一个个遍历去更新EventAffinityScoreDO表的数据。但是这样耗时比较慢,测试过30万的数据需要2小时

  private void eventSubjectHandle(String tenantId, String eventSubject) {// 查询eventAffinityScoreDO表,更新时间小于今天的(今天更新过的不更新)final Integer pageSize = 2000;PageResult<EventAffinityScoreDO> groupPag =eventAffinityScoreDbService.findByTenantIdAndTimePage(tenantId, eventSubject, 1, pageSize);Integer pages = groupPag.getPages();Integer pageNum = groupPag.getPageNum();while (pages >= pageNum) {if (pageNum > 1) {groupPag =eventAffinityScoreDbService.findByTenantIdAndTimePage(tenantId, eventSubject, 1, pageSize);}List<EventAffinityScoreDO> list = groupPag.getList();forEventAffinityScore(tenantId, eventSubject, list);if (list.size() < pageSize) {break;}pageNum++;}}private void forEventAffinityScore(String tenantId, String eventSubject, List<EventAffinityScoreDO> eventAffinityScoreDOS) {eventAffinityScoreDOS.forEach((eventAffinityScoreDO) -> {//更新EventAffinityScoreDO表数据updateOrAddAffinity(tenantId,eventAffinityScoreDO.getChatLabsId(),eventAffinityScoreDO.getEconomyId(),eventAffinityScoreDO.getAttributeValue(),eventSubject,eventAffinityScoreDO.getAttributeName());});}

单个线程一个个遍历去更新表数据太慢了,我想把2000的数据分成多份,每份200条,可以分成10份。每份用一个线程去跑。这样跑2000的时间就大大缩短。大概等于跑200个数据的时间。
这里想到使用CountDownLatch

2.知识点CountDownLatch

CountDownLatch 是 Java 中的一个并发工具类,用于在多线程环境中控制线程的执行顺序。它允许一个或多个线程等待其他线程完成操作后再继续执行。
CountDownLatch 的构造方法接受一个整数作为参数,表示需要等待的线程数量。当一个线程完成了自己的任务后,可以调用 countDown() 方法来将计数器减1。当计数器的值变为0时,所有等待的线程都会被释放,可以继续执行。

3.解决问题

我们使用Lists.partition,把2000的集合拆分成每份200的小份,共10分。
CountDownLatch countDownLatch = new CountDownLatch(partition.size())设置CountDownLatch需要等待的线程数为拆分后的份数partition.size(),也就是10份
countDownLatch.countDown(); 每跑完一份计数器减一
countDownLatch.await();计数器减完主程序开始执行,继续循环后面的2000份

 private void eventSubjectHandle(String tenantId, String eventSubject)throws InterruptedException {// 查询eventAffinityScoreDO表,更新时间小于今天的(今天更新过的不更新)final Integer pageSize = 2000;PageResult<EventAffinityScoreDO> groupPag =eventAffinityScoreDbService.findByTenantIdAndTimePage(tenantId, eventSubject, 1,pageSize);Integer pages = groupPag.getPages();Integer pageNum = groupPag.getPageNum();while (pages >= pageNum) {if (pageNum > 1) {groupPag =eventAffinityScoreDbService.findByTenantIdAndTimePage(tenantId, eventSubject, 1, pageSize);}List<EventAffinityScoreDO> list = groupPag.getList();//Lists.partition把list进行拆分,没份200个List<List<EventAffinityScoreDO>> partition = Lists.partition(list, 200);//设置需要等待的线程数量,就是我们的集合大小CountDownLatch countDownLatch = new CountDownLatch(partition.size());for (List<EventAffinityScoreDO> eventAffinityScoreDOS : partition) {eventSubjectExecutorPool.execute(() -> {try {forEventAffinityScore(tenantId, eventSubject, eventAffinityScoreDOS);} catch (Exception e) {log.info("AutoAffinityJob updateAffinityByEventSubject error tenantId:{},eventSubject:{}",tenantId,eventSubject,e);}//每处理完200份计数器减一countDownLatch.countDown();});}//计数器减完主程序开始执行,继续循环后面的2000份countDownLatch.await();if (list.size() < pageSize) {break;}pageNum++;}}private void forEventAffinityScore(String tenantId, String eventSubject, List<EventAffinityScoreDO> eventAffinityScoreDOS) {eventAffinityScoreDOS.forEach((eventAffinityScoreDO) -> {// 根据生态中事件属性属性值更新or新增影响到的内容亲和力updateOrAddAffinity(tenantId,eventAffinityScoreDO.getChatLabsId(),eventAffinityScoreDO.getEconomyId(),eventAffinityScoreDO.getAttributeValue(),eventSubject,eventAffinityScoreDO.getAttributeName());});}

这里需要注意的是如果线程池设置的太小,会导致触发拒绝策略。如果触发了拒绝策略countDownLatch.countDown()就不会执行了。就会导致countDownLatch.await()一直等待。所以这里我把线程池的队列设置的很大Integer.MAX_VALUE,这样不会触发拒绝策略。因为我们最多就10个线程,也不会导致出现OOM

@Configuration
@Slf4j
public class CalculateAffinityThreadPool {@Bean(name = "eventSubjectExecutorPool")public ExecutorService eventSubjectExecutorPool() {int poolSize = ThreadExecutorUtils.getNormalCoreSize();return ThreadExecutorUtils.createNormalThreadPool(poolSize,poolSize,0L,TimeUnit.MILLISECONDS,Integer.MAX_VALUE,"eventSubject-pool",false);}}

经过测试跑30万的数据只需要20分钟了。

http://www.lryc.cn/news/178428.html

相关文章:

  • 基于视频技术与AI检测算法的体育场馆远程视频智能化监控方案
  • leetcodetop100(29) K 个一组翻转链表
  • 最新影视视频微信小程序源码-带支付和采集功能/微信小程序影视源码PHP(更新)
  • C++:vector 定义,用法,作用,注意点
  • Firecamp2.7.1exe安装与工具调试向后端发送SocketIO请求
  • MySQL到TiDB:Hive Metastore横向扩展之路
  • 算法通关村-----寻找祖先问题
  • Sentinel结合Nacos实现配置持久化(全面)
  • Verilog中什么是断言?
  • Oracle分区的使用详解:创建、修改和删除分区,处理分区已满或不存在的插入数据,以及分区历史数据与近期数据的操作指南
  • SLAM从入门到精通(amcl定位使用)
  • 【C/C++】C/C++面试八股
  • Scala第八章节
  • k8s-实战——kubeadm二进制编译
  • vite 和 webpack 的区别
  • 传统遗产与技术相遇,古彝文的数字化与保护
  • 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)
  • 1042 字符统计
  • 3 OpenCV两张图片实现稀疏点云的生成
  • 在Springboot项目中使用Redis提供给Lua的脚本
  • 分类预测 | MATLAB实现NGO-CNN北方苍鹰算法优化卷积神经网络数据分类预测
  • Linux或Centos查看CPU和内存占用情况_top只能查看对应的命令_如何查看具体进程---linux工作笔记062
  • 什么是DevOps
  • 力扣每日一题
  • 测试OpenCvSharp库的模板匹配功能
  • 网络编程day04(网络属性函数、广播、组播、TCP并发)
  • HALCON支持GPU加速的算子有哪些?
  • MacBook Pro 电池电量限制充电怎么设置AlDente Pro for Mac最大充电限制工具
  • 毕业设计选题之Java+springboot线上蔬菜销售与配送系统(源码+调试+开题+lw)
  • 【Leetcode】162.寻找峰值