当前位置: 首页 > news >正文

【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现

目录

一、非线性方程式求根

1、二分法(Bisection Method、对分法)

a. 理论简介

b. python实现

2、迭代法(Iterative Method)

a. 理论简介

b. python实现

3、Newton 迭代法(Newton's Method)

a. 理论简介

b. python实现


一、非线性方程式求根

        非线性方程举例:

f(x)=0

5x^4+3x+1=0

        非线性方程式求根是一个重要的数值计算问题,常用的方法包括二分法、迭代法和牛顿迭代法。

1、二分法(Bisection Method、对分法)

a. 理论简介

(连续函数介值定理)

        二分法是一种简单而直观的求根方法,适用于单调函数的根。它的基本思想是通过不断缩小根所在区间来逼近根的位置。具体步骤如下:

  • 首先,选择一个初始区间[a, b],确保函数在这个区间内连续且函数值异号(即f(a) * f(b) < 0)。
  • 然后,计算区间的中点c = (a + b) / 2,并计算函数在c处的值f(c)。
  • 接下来,根据f(c)与0的关系,确定新的区间[a, c]或[c, b],使得新的区间内仍满足函数值异号的条件。
  • 重复上述步骤,直到满足预设的精度要求,即根的近似值落在所选区间内。

b. python实现

def f(x):return 5 * x**4 + 3 * x + 1def bisection_method(a, b, tolerance=1e-6, max_iterations=100):if f(a) * f(b) >= 0:return Nonefor _ in range(max_iterations):c = (a + b) / 2if abs(f(c)) < tolerance:return cif f(c) * f(a) < 0:b = celse:a = creturn None# 调用二分法求解方程的根
root = bisection_method(a=-1, b=0)
if root is not None:print("方程的一个根为:", root)
else:print("未找到方程的根")

注意,二分法要求初始区间[a, b]满足f(a) * f(b) < 0,即方程在区间的两个端点上取值异号。

输出:

a=-0.5, b=1
方程的一个根为: -0.36193275451660156
a=-1, b=0
未找到方程的根

2、迭代法(Iterative Method)

a. 理论简介

        迭代法是一种通过不断迭代逼近根的方法,适用于任意函数的根。它的基本思想是从一个初始的近似值开始,通过不断更新逼近根的位置,直到满足预设的精度要求。具体步骤如下:

  • 首先,选择一个初始的近似值x0。
  • 然后,根据迭代公式x[i+1] = g(x[i]),计算下一个近似值x[i+1]。
  • 重复上述步骤,直到满足预设的精度要求,即近似值与根的差值足够小。

b. python实现

def g(x):return (-1) / (5 * x**3 + 3)def iterative_method(initial_guess, tolerance=1e-6, max_iterations=100):x = initial_guessfor _ in range(max_iterations):x_next = g(x)if abs(x_next - x) < tolerance:return x_nextx = x_nextreturn None# 调用迭代法求解方程的根
root = iterative_method(initial_guess=0)
if root is not None:print("方程的一个根为:", root)
else:print("未找到方程的根")

注意,迭代法的收敛性与迭代函数的选择密切相关,对于某些函数可能无法收敛或者收敛速度很慢。

输出:

方程的一个根为: -0.36193292438672897

3、Newton 迭代法(Newton's Method)

a. 理论简介

        牛顿迭代法是一种快速收敛的求根方法,适用于光滑函数的根。它利用函数的局部线性近似来逼近根的位置。具体步骤如下:

  • 首先,选择一个初始的近似值x0。
  • 然后,根据牛顿迭代公式x[i+1] = x[i] - f(x[i]) / f'(x[i]),计算下一个近似值x[i+1]。
  • 重复上述步骤,直到满足预设的精度要求,即近似值与根的差值足够小。

b. python实现

def f(x):return 5 * x**4 + 3 * x + 1def f_prime(x):return 20 * x**3 + 3def newton_method(initial_guess, tolerance=1e-6, max_iterations=100):x = initial_guessfor _ in range(max_iterations):delta_x = f(x) / f_prime(x)x -= delta_xif abs(delta_x) < tolerance:return xreturn None# 调用牛顿迭代法求解方程的根
root = newton_method(initial_guess=0)
if root is not None:print("方程的一个根为:", root)print(int(f(root)))
else:print("未找到方程的根")

注意,牛顿法要求2阶导不编号,1阶导不为0

输出:

方程的一个根为: -0.3619330489831212

http://www.lryc.cn/news/176464.html

相关文章:

  • linux主机名
  • 前端uniapp图片select联动文本切换
  • java - 包装类
  • 防火墙基础
  • 服务断路器_Resilience4j的断路器
  • 微信小程序学习笔记3.0
  • nginx 反向代理 负载均衡 动静分离
  • Codeanalysis(tca)后端二次开发环境搭建
  • JS前端树形Tree数据结构使用
  • Automation Anywhere推出新的生成式AI自动化平台,加速提高企业生产力
  • 电缆隧道在线监测系统:提升电力设施安全与效率的关键
  • Java BigDecimal 详解
  • 简述信息论与采样定理
  • 网络安全之网站常见的攻击方式
  • iOS Swift 拍照识别数字(Recognizing Text in Images)
  • 数学建模:智能优化算法及其python实现
  • monkeyrunner环境搭建和初步用法
  • 2024华为校招面试真题汇总及其解答(一)
  • css调整字体间距 以及让倾斜字体
  • 工具篇 | Gradle入门与使用指南 - 附Github仓库地址
  • 使用 Python 函数callable和isinstance的意义
  • Netty场景及其原理
  • Java接口和接口继承
  • 2023 年解锁网络安全即服务
  • python基于轻量级卷积神经网络模型GhostNet开发构建养殖场景下生猪行为识别系统
  • Selenium自动化测试 —— 通过cookie绕过验证码的操作!
  • 链表(单链表、双链表)
  • 面试题08.05.递归算法
  • 分布式IT监控系统
  • Redis 是什么?