当前位置: 首页 > news >正文

分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测

分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测

目录

    • 分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测(完整源码和数据)
2.优化参数为:学习率,批量处理大小,正则化参数。
3.图很多,包括分类效果图,迭代优化图,混淆矩阵图。
4.附赠案例数据可直接运行main一键出图~
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.输入多个特征,分四类。

程序设计

  • 完整程序和数据获取方式(资源处下载):Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                          softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/174398.html

相关文章:

  • 分享一个java+springboot+vue校园电动车租赁系统(源码、调试、开题、lw)
  • 高性能计算环境下的深度学习异构集群建设与优化实践
  • Laravel框架 - Facade门面
  • 算法通关村第16关【青铜】| 滑动窗口思想
  • CentOS安装openjdk和elasticsearch
  • 【新版】系统架构设计师 - 案例分析 - 信息安全
  • 数据库设计(火车订票系统)
  • qemu+docker在服务器上搭建linux内核调试环境
  • Stable Diffusion 参数介绍及用法
  • 打印大对象日志导致GC问题的解决
  • 【Docker】学习笔记
  • 网易云信4K 8K RTC助力远程医疗的技术实践
  • 【排序算法】冒泡排序、插入排序、归并排序、希尔排序、选择排序、堆排序、快速排序
  • Linux学习笔记-应用层篇
  • MySQL数据库的存储引擎
  • Linux-多路转接-epoll
  • Java面试被问了几个简单的问题,却回答的不是很好
  • 概率论几种易混淆的形式
  • PyTorch数据增强后的结果展示
  • 指定程序在哪个GPU上运行
  • Linux CentOS7 vim多文件编辑
  • PAT甲级真题1153: 解码PAT准考证
  • linux信号
  • JavaWeb开发-05-SpringBootWeb请求响应
  • Ubuntu下载
  • Vue 的组件加载顺序和渲染顺序
  • leetcode Top100(17)矩阵置零
  • 论文精读(2)—基于稀疏奖励强化学习的机械臂运动规划算法设计与实现(内含实现机器人控制的方法)
  • 快速安装keepalive
  • nginx实现反向代理实例