当前位置: 首页 > news >正文

【国科大卜算】Truck History 最小生成树Prim

Truck History

文章目录

  • Truck History
    • problem description
    • Input
    • Output
    • Sample
    • 个人理解

problem description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company’s history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan – i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as
1 Σ ( t o , t d ) d ( t o , t d ) \frac{1}{\Sigma_{(t_o,t_d)d(t_o,t_d)}} Σ(to,td)d(to,td)1
where the sum goes over all pairs of types in the derivation plan such that t o t_o to is the original type and t d t_d td the type derived from it and $d(t_o,t_d) $ is the distance of the types.

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text “The highest possible quality is 1/Q.”, where 1/Q is the quality of the best derivation plan.

Sample

InputOutput
4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0
The highest possible quality is 1/3.

个人理解

用一个由7个字符组成的字符串代表一个卡车,其中两个不同的字符串之间各个相同位置的不同的字符数目代表其距离 d ( t o , t d ) d(t_o,t_d) d(to,td),其中 t d t_d td为从 t o t_o to中派生出来的类型。其中第一个输入的字符串无父类型。所以可以理解为树形结构,其中第一个输入的字符串为这颗树的父节点,且每一个节点到其衍生节点到距离可以视为该段的权值,所以求最小生成树。

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int a[2010][2010],book[2010],dis[2020];
char c[2010][2010];
int n,m,t;//n个点,m条边
const int inf=0x3f3f3f;
int sum;int prim()
{int u;sum=0;for(int i=1;i<=n;i++){book[i]=0;dis[i]=a[1][i];}book[1]=1;dis[1]=0;for(int i=1;i<n;i++){int minn=inf;for(int j=1;j<=n;j++){if(dis[j]<minn&&book[j]==0){u=j;minn=dis[j];}}book[u]=1;sum+=dis[u];for(int v=1;v<=n;v++){if(!book[v]&&dis[v]>a[u][v])dis[v]=a[u][v];}}return sum;
}
int main()
{while(cin>>n,n){memset(a,inf,sizeof(a));for(int i=1;i<=n;i++){cin>>c[i];}for(int i=1;i<=n;i++){for(int j=i+1;j<=n;j++){t=0;for(int k=0;k<7;k++){if(c[i][k]!=c[j][k]){t++;}}a[i][j]=a[j][i]=t;}}prim();printf("The highest possible quality is 1/%d.\n",sum);}return 0;
}
http://www.lryc.cn/news/173739.html

相关文章:

  • SQLAlchemy映射表结构和对数据的CRUD
  • Spring boot原理
  • 技术贴 | 深度解析 PostgreSQL Protocol v3.0(二)— 扩展查询
  • HDFS编程实践-从HDFS中下载指定文件到本地
  • 安防监控视频AI智能分析网关:人流量统计算法的应用场景汇总
  • 第一百五十二回 自定义组件综合实例:游戏摇杆三
  • 多线程的学习中篇上
  • 非标准化套利
  • 从CNN(卷积神经网络),又名CAM获取热图
  • kafka消费者多线程开发
  • 布局设计和实现:计算器UI【TableLayout、GridLayout】
  • stack与queue的简单封装
  • ChatGPT使用技巧整理
  • 机器学习笔记 - 维度诅咒的数学表达
  • 组合计数训练题解
  • P1095 [NOIP2007 普及组] 守望者的逃离
  • Python函数绘图与高等代数互融实例(八):箱线图|误差棒图|堆积图
  • 联想y7000 y7000p 2018/2019 不插电源 不插充电器, 直接关机 ,电量一直89%/87%/86%,V0005如何解决?
  • stm32与esp8266通信
  • 组合数 2.1 2.2
  • 【数组的中心位置】python实现-附ChatGPT解析
  • 黑马JVM总结(二十三)
  • AI人体行为分析:玩手机/打电话/摔倒/攀爬/扭打检测及TSINGSEE场景解决方案
  • HI_NAS linux 记录
  • 计算机图形学中的几何光学
  • 「UG/NX」BlockUI 选择小平面区域 Select Facet Region
  • 【完全二叉树魔法:顺序结构实现堆的奇象】
  • Maven官方镜像仓库与阿里云云效Maven
  • python系列教程215——列表解析与矩阵
  • fonts什么文件夹可以删除吗?fonts文件夹删除了怎么恢复