当前位置: 首页 > news >正文

多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出

多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出

目录

    • 多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出
      • 预测效果
      • 基本介绍
      • 程序设计
      • 往期精彩
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现PSO-BP粒子群优化BP神经网络多输入多输出预测
1.data为数据集,10个输入特征,3个输出变量。
2.main.m为主程序文件。
3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载方式:私信博主回复MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train,1);   % 输出层节点数
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  建立网络
net = newff(p_train, t_train, hiddennum);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   50;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  1.0;        % 最大边界
popmin  = -1.0;        % 最小边界
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum);  % 初始化种群V(i, :) = rands(1, numsum);    % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end%%  提取最优初始权值和阈值
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

http://www.lryc.cn/news/173286.html

相关文章:

  • 操作系统:系统引导以及虚拟机
  • AIGC绘本——海马搬家来喽
  • strtok()函数的使用方法
  • Matlab中的handle 类
  • C#,数值计算——Multinormaldev的计算方法与源程序
  • 软件项目测试用例评审
  • 图像处理与计算机视觉--第二章-成像与图像表示-8问
  • python中使用多线程批量导入包
  • 齿轮减速机设备类网站pbootcms模板(PC端+手机端自适应)
  • MySQL报错:this is incompatible with sql_mode=only_full_group_by 解决方法
  • impala常用时间函数,date->string->timestamp互转
  • 无源供电无线测温系统的应用意义
  • 使用 PyTorch 的计算机视觉简介 (1/6)
  • 用PHP实现极验验证功能
  • 【数据结构初阶】三、 线性表里的链表(无头+单向+非循环链表)
  • Mybatis 映射器与XML配置职责分离
  • 微服务引擎
  • 前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— JS基础(三)
  • 搭建部署属于自己的基于gpt3.5的大语言模型(基于flask+html+css+js+mysql实现)
  • AI创作专家,免费的AI创作专家工具
  • Nginx之gzip模块解读
  • 微软在Windows 11推出Copilot,将DALL-E 3集成在Bing!
  • SLAM从入门到精通(消息传递)
  • 思科路由器:NAT的基础配置
  • 动态代理。
  • Learn Prompt-GPT-4:能力
  • iOS——ViewController的生命周期
  • SkyWalking内置参数与方法
  • 【C++面向对象侯捷】12.虚函数与多态 | 13.委托相关设计【设计模式 经典做法,类与类之间关联起来,太妙了,不断的想,不断的写代码】
  • 基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(五)