当前位置: 首页 > news >正文

GAN学习笔记

1.原始的GAN

1.1原始的损失函数

1.1.1写法1参考1,参考2

 1.1.2 写法2

 where,

  • G = Generator 
  • D = Discriminator 
  • Pdata(x) = distribution of real data 
  • P(z) = distribution of generator 
  • x = sample from Pdata(x) 
  • z = sample from P(z) 
  • D(x) = Discriminator network 
  • G(z) = Generator network 

 1.1.3 写法3:  参考3

 1.2Wasserstein损失  参考

2.Conditional GAN (CGAN)

2.1 写法1:

The Discriminator has two task

  • Discriminator has to correctly label real images which are coming from training data set as “real”.
  • Discriminator has to correctly label generated images which are coming from Generator as “fake”.

We need to calculate two losses for the Discriminator. The sum of the “fake” image and “real” image loss is the overall Discriminator lossSo the loss function of the Discriminator is aiming at minimizing the error of predicting real images coming from the dataset and fake images coming from the Generator given their one-hot labels.

The Generator network has one task

  • To create an image that looks as “real” as possible to fool the Discriminator.

The loss function of the Generator minimizes the correct prediction of the Discriminator on fake images conditioned on the specified one-hot labels.

  • The conditioning is performed by feeding y into the both the discriminator and generator as additional input layer.
  • In the generator the prior input noise p_z(z), and y are combined in joint hidden representation.
  • In the discriminator x and y are presented as inputs and to a discriminative function.
  • The objective function of a two-player minimax game become:

2.2 写法2:

where   is a probability distribution over classes,  is the probability distribution of real images of class C,  and   the probability distribution of images generated by the generator when given class label C.

2.3 写法3:参考

http://www.lryc.cn/news/171954.html

相关文章:

  • layui框架学习(45: 工具集模块)
  • 车道检测:Decoupling the Curve Modeling and Pavement Regression for Lane Detection
  • 【扩散生成模型】Diffusion Generative Models
  • 美联储加息步伐“暂停”!BTC凌晨力守27000美元!
  • 微信小程序与idea后端如何进行数据交互
  • Java 学习路线分享 maven 是什么?
  • 实战演练 | Navicat 常用功能之转储与运行 SQL 文件
  • MySQL的备份与恢复
  • Python中的函数未定义的错误
  • AG35学习笔记(二):安装编译SDK、CMakeLists编译app、Scons编译server
  • 多台服务器sessionId共享
  • 如何在Gazebo中实现多机器人编队仿真
  • 迅为iTOP-iMX6QPLUS-Android6.0下uboot添加网卡驱动
  • sql server 触发器的使用
  • 使用亚马逊云服务器在 G4 实例上运行 Android 应用程序
  • Direct3D融合技术
  • 【计算机网络】信号处理接口 Signal API(1)
  • 贝叶斯滤波计算4d毫米波聚类目标动静属性
  • 华为hcie认证考试怎么考?
  • vue +element 删除按钮操作 (删除单个数据 +删除页码处理 )
  • 更新GitLab上的项目
  • K8S群集调度
  • 完美解决Echarts X坐标轴下方文字最后一个字体加粗颜色加深的问题
  • WebGL 计算平行光、环境光下的漫反射光颜色
  • 解决SpringMVC在JSP页面取不到ModelAndView中数据
  • Spring 6.0 新特性
  • 计算机竞赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别
  • 软件过程能力成熟度评估——CSMM认证
  • 学内核之二十一:系统调用栈结构分析
  • 互联网3.0 数字原生——数物虚实多维细粒度泛在融合