当前位置: 首页 > news >正文

二叉搜索树(BST,Binary Search Tree)

文章目录

  • 1. 二叉搜索树
    • 1.1 二叉搜索树概念
    • 1.2 二叉搜索树的查找
    • 1.3 二叉搜索树的插入
    • 1.4 二叉搜索树的删除
  • 2 二叉搜索树的实现
  • 3 二叉搜索树的应用
    • 3.1二叉搜索树的性能分析

1. 二叉搜索树

1.1 二叉搜索树概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值。
  2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。
  3. 它的左右子树也分别为二叉搜索树。

在这里插入图片描述

1.2 二叉搜索树的查找

a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b、最多查找高度次(最高位O(N)),走到到空,还没找到,这个值不存在。

1.3 二叉搜索树的插入

插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给root指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点
在这里插入图片描述

1.4 二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情
况:

a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点
看起来有待删除节点有4中情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程
如下:
情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点–直接删除
情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点–直接删除
情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点
中,再来处理该结点的删除问题–替换法删除。
在这里插入图片描述

2 二叉搜索树的实现

template<class K>
struct BSTreeNode
{BSTreeNode* _left;BSTreeNode* _right;K _key;BSTreeNode(const K& key):_left(nullptr), _right(nullptr), _key(key){}
};
template<class K>
struct BSTree
{typedef BSTreeNode<K> Node;
public:BSTree():_root(nullptr){}bool insert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}elsereturn false;}cur = new Node(key);if (parent->_key < key){parent->_right = cur;}elseparent->_left = cur;return true;}bool Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key)cur = cur->_left;else if (cur->_key < key)cur = cur->_right;elsereturn true;}return false;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else//找到了{if (cur->_left == nullptr)//左为空{if (cur == _root){_root = _root->_right;}else{if (parent->_right == cur){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}}else if (cur->_right == nullptr)//右为空{if (cur == _root){_root = _root->_left;}else{if (parent->_right = cur){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}}else//左右都不为空{Node* parent = cur;Node* LeftMax = cur->_left;while (LeftMax->_right){parent = LeftMax;LeftMax = LeftMax->_right;}swap(cur->_key, LeftMax->_key);if (parent->_left == LeftMax){parent->_left = LeftMax->_left;}else{parent->_right = LeftMax->_left;}cur = LeftMax;}delete cur;return true;}}return false;}void InOrder(){_InOrder(_root);cout << endl;}void _InOrder(Node* root){if (root == NULL){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}
private:Node* _root;
};void TestBSTree1()
{int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };BSTree<int> t;for (auto e : a){t.insert(e);}t.InOrder();t.Erase(4);t.InOrder();t.Erase(6);t.InOrder();t.Erase(7);t.InOrder();t.Erase(3);t.InOrder();for (auto e : a){t.Erase(e);}t.InOrder();
}

3 二叉搜索树的应用

  1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到
    的值。
    比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
    以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
    在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
  2. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方
    式在现实生活中非常常见:
    比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英
    文单词与其对应的中文<word, chinese>就构成一种键值对;
    再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出
    现次数就是<word, count>就构成一种键值对。
以下是完整的代码,包括改造二叉搜索树为KV结构、测试二叉搜索树的函数和主函数:cpp
#include <iostream>  
#include <string>  using namespace std;  template<class K, class V>  
struct BSTNode  
{  BSTNode(const K& key = K(), const V& value = V())  : _pLeft(nullptr) , _pRight(nullptr), _key(key), _value(value)  {}  BSTNode<K, V>* _pLeft;  BSTNode<K, V>* _pRight;  K _key;  V _value;  
};  template<class K, class V>  
class BSTree  
{  
public:  typedef BSTNode<K, V> Node;  typedef Node* PNode;  
public:  BSTree(): _pRoot(nullptr){}  PNode Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return true;}}return false;}bool Insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else // 找到了{// 左为空if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_right == cur){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}}// 右为空else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_right == cur){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}} // 左右都不为空 else{// 找替代节点Node* parent = cur;Node* leftMax = cur->_left;while (leftMax->_right){parent = leftMax;leftMax = leftMax->_right;}swap(cur->_key, leftMax->_key);if (parent->_left == leftMax){parent->_left = leftMax->_left;}else{parent->_right = leftMax->_left;}cur = leftMax;}delete cur;return true;}}return false;}  
private:  PNode _pRoot;  
};  

3.1二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二
叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
在这里插入图片描述
最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为: l o g 2 N log_2 N log2N
最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为: N 2 \frac{N}{2} 2N
问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插
入关键码,二叉搜索树的性能都能达到最优?AVL树和红黑树就可以上场了。

http://www.lryc.cn/news/171573.html

相关文章:

  • 分析key原理
  • [CISCN2019 华东南赛区]Web11 SSTI
  • 百度春招C++后端面经总结
  • 小程序开发一个多少钱啊
  • C# 随机数生成 Mersenne Twister 马特赛特旋转演算法 梅森旋转算法
  • C++进阶(二)
  • zoneinfo
  • 基于微信小程序的实验室预约管理系统设计与实现
  • 腾讯mini项目-【指标监控服务重构】2023-08-17
  • 前端需要知道的计算机网络知识----网络安全,自学网络安全,学习路线图必不可少,【282G】初级网络安全学习资源分享!
  • #循循渐进学51单片机#定时器与数码管#not.4
  • 基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(五)
  • Linux: Cache 简介
  • 常见位运算公式使用场景
  • virtualbox配置ubuntu1804虚拟机相关流程
  • 防火墙基本概念
  • 易点易动固定资产管理平台:打通BMP,实现高效流程管理与全生命周期管理
  • uniapp webview实现双向通信
  • Linux动态库
  • ESP-IDF学习——1.环境安装与hello-world
  • 【算法】二分答案
  • 阿曼市场最全开发攻略,看这一篇就够了
  • 探讨UUID和Secrets:确保唯一性与数据安全的利器
  • 06-Redis缓存高可用集群
  • LCP 18.早餐组合
  • Tomcat调优【精简版】
  • 通过NDK编译C程序运行在iMX6q开发板上
  • 【学习笔记】Java 一对一培训(2.1)Java基础语法
  • 外贸独立站哪家好?推荐的独立站建站平台?
  • 六、变量与常量