当前位置: 首页 > news >正文

C# Onnx Yolov8 Cls 分类

效果

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;ClasResult result_pro;KeyValuePair<string, float> result_cls;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[1000];// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_cls = result_pro.process_result(result_array);result_image = result_pro.draw_result(result_cls, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov8n-cls.onnx";classer_path = startupPath + "\\yolov8-cls-lable.txt";result_pro = new ClasResult(classer_path);// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}}
}

Demo下载

http://www.lryc.cn/news/171483.html

相关文章:

  • Fiddler常用的快键键
  • 【Linux】生产消费模型 + 线程池
  • 基于springboot+vue的爱心助农网站(前后端分离)
  • “华为杯”研究生数学建模竞赛2019年-【华为杯】D题:汽车行驶工况构建(附获奖论文和MATLAB代码实现)
  • v-cloak的作用和原理
  • pip pip3安装库时都指向python2的库
  • 和逸云 RK3229 如何进入maskrom强刷模式
  • 防静电离子风扇的应用及优点
  • git中无法使用方向键的问题
  • 负载均衡中间件---Nginx
  • Linux硬链接、软链接
  • React面试题总结(一)
  • 一句话设计模式12:适配器模式
  • iOS加固保护技术:保护你的iOS应用免受恶意篡改
  • 阿里云产品试用系列-云桌面电脑
  • vue3使用vue-virtual-scroller虚拟滚动遇到的问题
  • c#用Gnuplot画图源码
  • 【前端设计模式】之工厂模式
  • Hive 的函数介绍
  • 【Linux基础】第31讲 Linux用户和用户组权限控制命令(三)
  • html form表单高级用法
  • openssl升级
  • 【数据结构】图的遍历:广度优先(BFS),深度优先(DFS)
  • Mysql 学习总结(89)—— Mysql 库表容量统计
  • virtualBox安装配置使用
  • 北斗导航 | RTD、RTK完好性之B值、VPL与HPL计算(附B值计算matlab源代码)
  • more often than not 的含义
  • 【Linux】Linux环境配置安装
  • 从零学习开发一个RISC-V操作系统(二)丨GCC编译器和ELF格式
  • 论文阅读_大语言模型_Llama2