mybatisplus,jdbc 批量插入
1.测试用例
项目中遇到在做导入号码的时候我们会用到批量导入,提高入库的速度。接下来我们以10000条为测试用例。
1.1 批量执行sql语句
当需要成批插入或者更新记录时,可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理。通常情况下比单独提交处理更有效率
JDBC的批量处理语句包括下面三个方法:
- addBatch(String):添加需要批量处理的SQL语句或是参数;
- executeBatch():执行批量处理语句;
- clearBatch():清空缓存的数据
通常我们会遇到两种批量执行SQL语句的情况:
- 多条SQL语句的批量处理;
- 一个SQL语句的批量传参;
1.2 导入excell
2.先使用mybatisplus的批量插入
phoneListService.saveBatch(callLists);
感觉插入还是有些慢,查了下文档,需要增加一个参数
Postgres jdbc的连接:
url: jdbc:postgresql://102.2.1.21:5432/postgres?
binaryTransfer=false&forceBinary=false&reWriteBatchedInserts=true
Mysql jdbc连接:
jdbc:mysql://102.2.1.21:3306/demo?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B1&rewriteBatchedStatements=true
增加以下的参数进行优化
rewriteBatchedStatements=true
:控制是否将批量插入语句转换成更高效的形式,true
表示转换,默认为false
binaryTransfer=false
:控制是否使用二进制协议传输数据,false
表示不适用,默认为true
。
forceBinary=false
:控制是否将非 ASCII 字符串强制转换为二进制格式,false
表示不强制转换,默认为true
3.用jdbc插入
感觉还是慢,不过不知道是什么原因。后来该用jdbc原生的,每500提交一次
Connection conn = jdbcUtils.getConnection();PreparedStatement ps = null;try {ps = jdbcUtils.createPreparedStatement1(conn, sql);//取消自动提交conn.setAutoCommit(false);for (int i = 0; i < phoneList.size(); i++) {PhoneList call = phoneList.get(i);Long startTime = DateUtils.getSec("00:00");String date1 = phone.getTodayBegin();String date2 = phone.getTodayStop();logger.warn("======date1:{} date2:{}", date1, date2);if (StringUtil.isNotEmpty(date1)) {startTime = DateUtils.getSec(date1.substring(date1.indexOf(":") - 2));}long endTime = DateUtils.getSec("23:58");if (StringUtil.isNotEmpty(date2)) {endTime = DateUtils.getSec(date2.substring(date2.indexOf(":") - 2));}logger.warn("======startTime:{} endTime:{}", startTime, endTime);if (StringUtils.isNotEmpty(sql)) {String startTimeParam = DateUtils.parseDateToStr(DateUtils.YYYY_MM_DD_HH_MM_SS, phone.getStartTime());String endTimeParam = DateUtils.parseDateToStr(DateUtils.YYYY_MM_DD_HH_MM_SS, phone.getEndTime());ps = jdbcUtils.createPreparedStatement2(ps, call.getId(), 2, 1, 0, phone.getRetryCount(), startTime, endTime,112, call.getId(), 0, phone.getPrefix() + call.getCustomerPhone(), 1, phone.getPrefix() + call.getCustomerPhone(),1, phone.getName(), 101, phone.getCampaignId(), phone.getMark(), phone.getIvrProfileUrl(), startTimeParam, endTimeParam);}ps.addBatch();if (i % 500 == 0) {ps.executeBatch();ps.clearBatch();}}ps.executeBatch();ps.clearBatch();//所有语句都执行完毕后才手动提交sql语句conn.commit();} catch (SQLException e) {logger.error("insertBatchSql error:{}", e);} finally {jdbcUtils.close(conn, ps);}
jdbcutils工具,也可以自己实现
package com.gary.utils.jdbc;import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;/*** JDBC工具类** @author byx*/
public class JdbcUtils {private final ConnectionManager connManager;private static Logger logger = LoggerFactory.getLogger(JdbcUtils.class);/*** 创建JdbcUtils** @param dataSource 数据源*/public JdbcUtils(DataSource dataSource) {connManager = new ConnectionManager(dataSource);}public Connection getConnection() {return connManager.getConnection();}public void close(Connection conn, PreparedStatement stmt) {connManager.close(conn, stmt, null);}public PreparedStatement createPreparedStatement1(Connection conn, String sql) throws SQLException {PreparedStatement stmt = conn.prepareStatement(sql);return stmt;}public PreparedStatement createPreparedStatement2(PreparedStatement stmt, Object... params) throws SQLException {for (int i = 0; i < params.length; ++i) {stmt.setObject(i + 1, params[i]);}return stmt;}private PreparedStatement createPreparedStatement(Connection conn, String sql, Object... params) throws SQLException {PreparedStatement stmt = conn.prepareStatement(sql);for (int i = 0; i < params.length; ++i) {stmt.setObject(i + 1, params[i]);}return stmt;}/*** 查询数据库并转换结果集。* 用户可自定义结果集转换器。* 用户也可使用预定义的结果集转换器。** @param sql sql语句* @param resultMapper 结果集转换器* @param params sql参数* @param <T> resultSetMapper返回的结果类型* @return 成功则返回转换结果,失败则抛出DbException,结果为空则返回空列表* @see ResultMapper* @see ListResultMapper* @see SingleRowResultMapper*/public <T> T query(String sql, ResultMapper<T> resultMapper, Object... params) {ResultSet rs = null;PreparedStatement stmt = null;Connection conn = null;try {conn = connManager.getConnection();logger.info("conn:{}", conn);stmt = createPreparedStatement(conn, sql, params);rs = stmt.executeQuery();return resultMapper.map(rs);} catch (SQLException e) {throw new DbException(e.getMessage(), e);} finally {connManager.close(conn, stmt, rs);}}/*** 查询数据库,对结果集的每一行进行转换,然后将所有行封装成列表。* 用户可自定义行转换器。* 用户也可使用预定义的行转换器。** @param sql sql语句* @param rowMapper 行转换器* @param params sql参数* @param <T> rowMapper返回的结果类型* @return 成功则返回结果列表,失败则抛出DbException,结果为空则返回空列表* @see RowMapper* @see BeanRowMapper* @see MapRowMapper* @see SingleColumnRowMapper*/public <T> List<T> queryList(String sql, RowMapper<T> rowMapper, Object... params) {return query(sql, new ListResultMapper<>(rowMapper), params);}/*** 查询数据库,将结果集的每一行转换成JavaBean,然后将所有行封装成列表。** @param sql sql语句* @param type JavaBean类型* @param params sql参数* @param <T> JavaBean类型* @return 成功则返回结果列表,失败则抛出DbException,结果为空则返回空列表*/public <T> List<T> queryList(String sql, Class<T> type, Object... params) {return query(sql, new ListResultMapper<>(new BeanRowMapper<>(type)), params);}/*** 查询数据库,返回结果集中的单个值。* 如果结果集中有多个值,则只返回第一行第一列的值。** @param sql sql语句* @param params sql参数* @param <T> 结果类型* @return 成功则返回结果值,失败则抛出DbException,结果为空则返回null*/public <T> T querySingleValue(String sql, Object... params) {return query(sql, new SingleRowResultMapper<>(new SingleColumnRowMapper<>()), params);}/*** 查询数据库,返回结果集中的单行数据。* 如果结果集中有多行数据,则只返回第一行数据。* 用户可自定义行转换器。* 用户也可使用预定义的行转换器。** @param sql sql语句* @param rowMapper 行转换器* @param params sql参数* @param <T> rowMapper返回的结果类型* @return 成功则返回结果,失败则抛出DbException,结果为空则返回null* @see RowMapper* @see BeanRowMapper* @see MapRowMapper* @see SingleColumnRowMapper*/public <T> T querySingleRow(String sql, RowMapper<T> rowMapper, Object... params) {return query(sql, new SingleRowResultMapper<>(rowMapper), params);}/*** 查询数据库,将结果集中的单行数据转换成JavaBean。** @param sql sql语句* @param type JavaBean类型* @param params sql参数* @param <T> JavaBean类型* @return 成功则返回结果,失败则抛出DbException,结果为空则返回null*/public <T> T querySingleRow(String sql, Class<T> type, Object... params) {return querySingleRow(sql, new BeanRowMapper<>(type), params);}/*** 更新数据库,返回影响行数** @param sql sql语句* @param params sql参数* @return 成功则返回影响行数,失败则抛出DbException*/public int update(String sql, Object... params) {Connection conn = null;PreparedStatement stmt = null;try {conn = connManager.getConnection();stmt = createPreparedStatement(conn, sql, params);return stmt.executeUpdate();} catch (Exception e) {throw new DbException(e.getMessage(), e);} finally {connManager.close(conn, stmt, null);}}/*** 开启事务*/public void startTransaction() {connManager.startTransaction();}/*** 提交事务*/public void commit() {connManager.commit();}/*** 回滚事务*/public void rollback() {connManager.rollback();}/*** 判断当前是否在事务中*/public boolean inTransaction() {return connManager.inTransaction();}
}
Datasource实现
package com.system.modules.utils.jdbc;import com.alibaba.druid.pool.DruidDataSourceFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import javax.sql.DataSource;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;public class JdbcDataSource {private static Logger logger = LoggerFactory.getLogger(JdbcDataSource.class);// 1. 声明静态数据源成员变量private static DataSource ds;// 2. 创建连接池对象static {logger.info("===数据库初始化====");// 加载配置文件中的数据InputStream is = JdbcUtils.class.getClassLoader().getResourceAsStream("durid.properties");Properties pp = new Properties();try {pp.load(is);logger.info("===数据库初始化====:{}",pp);// 创建连接池,使用配置文件中的参数ds = DruidDataSourceFactory.createDataSource(pp);} catch (IOException e) {logger.info("===数据库初始化====error:{}",e);} catch (Exception e) {logger.info("===数据库初始化====Exception:{}",e);}}// 3. 定义公有的得到数据源的方法public static DataSource getDataSource() {return ds;}
}
durid.propertes 实现:
driverClassName=org.postgresql.Driver url=jdbc:postgresql://100.2.13.2:5432/postgres?reWriteBatchedInserts=true username=root password=123456 initialSize=5 maxActive=50 maxWait=3000
执行时间:
看着速度快了许多。
4.总结
接下来还要研究下,mybatisplus为什么还是慢。