当前位置: 首页 > news >正文

MYSQL索引——B+树讲解

B-/B+树看 MySQL索引结构

B-树

B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树.它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图.
在这里插入图片描述

B-树有如下特点:
所有键值分布在整颗树中;
任何一个关键字出现且只出现在一个结点中;
搜索有可能在非叶子结点结束;
在关键字全集内做一次查找,性能逼近二分查找;

B+ 树

B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于:
所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data)
为所有叶子结点增加了一个链指针
简化 B+树 如下图
在这里插入图片描述

为什么使用B-/B+ Tree

红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构。MySQL 是基于磁盘的数据库系统,索引往往以索引文件的形式存储的磁盘上,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。为什么使用B-/+Tree,还跟磁盘存取原理有关。
局部性原理与磁盘预读
由于磁盘的存取速度与内存之间鸿沟,为了提高效率,要尽量减少磁盘I/O.磁盘往往不是严格按需读取,而是每次都会预读,磁盘读取完需要的数据,会顺序向后读一定长度的数据放入内存。而这样做的理论依据是计算机科学中著名的局部性原理:
当一个数据被用到时,其附近的数据也通常会马上被使用
程序运行期间所需要的数据通常比较集中
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率.预读的长度一般为页(page)的整倍数。
MySQL(默认使用InnoDB引擎),将记录按照页的方式进行管理**,每页大小默认为16K(这个值可以修改)**.linux 默认页大小为4K

B-/+Tree索引的性能分析

实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个结点只需一次I/O。
假设 B-Tree 的高度为 h,B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

B-Tree和B+Tree中为什么优先选择B+Tree

B+树更适合外部存储,由于内节点无 data 域,一个结点可以存储更多的内结点,每个节点能索引的范围更大更精确,也意味着 B+树单次磁盘IO的信息量大于B-树,I/O效率更高
Mysql是一种关系型数据库,区间访问是常见的一种情况,B+树叶节点增加的指向相邻节点的链指针,加强了区间访问性,可使用在范围区间查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找(between, <,>)。

B+Tree的定义

B+Tree是B树的变种,有着比B树更高的查询性能,来看下m阶B+Tree特征:
有m个子树的节点包含有m个元素(B-Tree中是m-1)
根节点和分支节点中不保存数据,只用于索引,所有数据都保存在叶子节点中。
所有分支节点和根节点都同时存在于子节点中,在子节点元素中是最大或者最小的元素。
叶子节点会包含所有的关键字,以及指向数据记录的指针,并且叶子节点本身是根据关键字的大小从小到大顺序链接。

在这里插入图片描述

红点表示是指向卫星数据的指针,指针指向的是存放实际数据的磁盘页,卫星数据就是数据库中一条数据记录。
叶子节点中还有一个指向下一个叶子节点的next指针,所以叶子节点形成了一个有序的链表,方便遍历B+树。

B+树的优势

1.更加高效的单元素查找
B+树的查找元素3的过程:
第一次磁盘IO
在这里插入图片描述

第二次磁盘IO
在这里插入图片描述

第三次磁盘IO
在这里插入图片描述

这个过程看下来,貌似与B树的查询过程没有什么区别。但实际上有两点不一样:
a、首先B+树的中间节点不存储卫星数据,所以同样大小的磁盘页可以容纳更多的节点元素,如此一来,相同数量的数据下,B+树就相对来说要更加矮胖些,磁盘IO的次数更少。
b、由于只有叶子节点才保存卫星数据,B+树每次查询都要到叶子节点;而B树每次查询则不一样,最好的情况是根节点,最坏的情况是叶子节点,没有B+树稳定。
2.叶子节点形成有顺链表,范围查找性能更优
B树范围查找3-8的过程
a、先查找3
在这里插入图片描述

b、再查找4、5、6、7、8,中间过程省略,直接到8的查找
在这里插入图片描述

这里查找的范围跨度越大,则磁盘IO的次数越多,性能越差。
B+树范围查找3-11的过程
在这里插入图片描述

先从上到下找到下限元素3,然后通过链表指针,依次遍历得到元素5/6/8/9/11;如此一来,就不用像B树那样一个个元素进行查找。

总结

1.单节点可以存储更多的元素,使得查询磁盘IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。
PS:在数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针。

http://www.lryc.cn/news/170889.html

相关文章:

  • VB将十进制整数转换成16进制以内的任意进制数
  • 基于SpringBoot+Vue的宠物领养饲养交流管理平台设计与实现
  • 【图像去噪】【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)
  • windbg调试句柄问题
  • 9月13-14日上课内容 第三章 ELK日志分析系统及部署实例
  • 服务器端应用的安装
  • 关于硬盘质量大数据分析的思考
  • RK3568核心板分区空间不足,如何修改分区大小?
  • Linux系统怎么修改主机名
  • BroadcastChannel方法跨浏览器窗口通信
  • 山石网科国产化防火墙,打造全方位边界安全解决方案
  • AVL 树
  • ggplot2做图(填坑中)
  • Python日志处理器,同时打印到控制台和保存到文件中,并保证格式一致
  • JavaWeb后端开发登录操作 登录功能 通用模板/SpringBoot整合
  • The 2023 ICPC Asia Regionals Online Contest (1)(A D I J K L)
  • C++ PrimerPlus 复习 第七章 函数——C++的编程模块(上)
  • 2.求循环小数
  • zabbix监控告警邮箱提醒,钉钉提醒
  • 典型数据结构-栈/队列/链表、哈希查找、二叉树(BT)、线索二叉树、二叉排序树(BST树)、平衡二叉树(AVL树)、红黑树(RB树)
  • pyarmor 加密许可证的使用
  • 网络路径监控分析
  • vue双向数据绑定是如何实现的?
  • el-date-picker 封装一个简单的日期组件, 主要是禁用日期
  • 保研复习-计算机组成原理
  • linux环境安装redis(亲测完成)
  • 关于命令行交互自动化,及pyinstaller打包wexpect的问题
  • 8.4 【MySQL】文件系统对数据库的影响
  • Python WEB框架FastAPI (二)
  • 基于Java网络书店商城设计实现(源码+lw+部署文档+讲解等)