当前位置: 首页 > news >正文

Linux Arm64修改页表项属性

文章目录

  • 前言
  • 一、获取pte
    • 1.1 pgd_offset
    • 1.2 pud_offset
    • 1.3 pmd_offset
    • 1.4 pte_offset_kernel
  • 二、修改pte属性
    • 2.1 set/clear_pte_bit
    • 2.2 pte_wrprotect
    • 2.3 pte_mkwrite
    • 2.4 pte_mkclean
    • 2.5 pte_mkdirty
  • 三、set_pte_at
  • 四、__flush_tlb_kernel_pgtable
  • 五、demo
  • 参考资料

前言

在这篇文章中演示了通过 update_mapping_prot 函数 来 hook 系统调用:
Linux ARM64 hook系统调用
接下来我们直接来修改对应系统调用的页表属性来hook 系统调用。

一、获取pte

pte_t *ptep_from_virt(uintptr_t addr) {pgd_t *pgdp;pud_t *pudp;pmd_t *pmdp;pte_t *ptep;struct mm_struct *mm = kallsyms_lookup_name_("init_mm");//获取内核全局页目录pgdp = pgd_offset(mm, addr);if (pgd_none(READ_ONCE(*pgdp))) {printk(KERN_INFO "failed pgdp");return 0;}pudp = pud_offset(pgdp, addr);if (pud_none(READ_ONCE(*pudp))) {printk(KERN_INFO "failed pudp");return 0;}pmdp = pmd_offset(pudp, addr);if (pmd_none(READ_ONCE(*pmdp))) {printk(KERN_INFO "failed pmdp");return 0;}ptep = pte_offset_kernel(pmdp, addr);if (!pte_valid(READ_ONCE(*ptep))) {printk(KERN_INFO "failed pte");return 0;}return ptep;
}

1.1 pgd_offset

pgd_offset用于在页表目录(page-table-directory)中查找条目(entry)

/* to find an entry in a page-table-directory */
#define pgd_index(addr)		(((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))#define pgd_offset_raw(pgd, addr)	((pgd) + pgd_index(addr))#define pgd_offset(mm, addr)	(pgd_offset_raw((mm)->pgd, (addr)))

pgd_index(addr) 宏用于计算给定地址 addr 在页表目录中的索引。它通过将地址右移 PGDIR_SHIFT 位,然后与 (PTRS_PER_PGD - 1) 进行按位与运算来计算索引值。

pgd_offset_raw(pgd, addr) 宏用于计算给定页表目录 pgd 和地址 addr 对应的页表目录项(pgd entry)的指针。它通过将 pgd 指针与 pgd_index(addr) 计算得到的索引相加来获得目录项的地址。

pgd_offset(mm, addr) 宏用于在给定的内存管理结构 mm 中计算地址 addr 对应的页表目录项的指针。它通过调用 pgd_offset_raw 宏,并传递 mm->pgd(页全局目录指针)和地址 addr 来获得目录项的指针。

如果是给定内核虚拟地址 addr 在页表目录中的索引等价于:

/** a shortcut which implies the use of the kernel's pgd, instead* of a process's*/
#define pgd_offset_k(address) pgd_offset(&init_mm, (address))

1.2 pud_offset

pud_offset用于在一级页表(first-level page table)中查找条目(entry)

/* Find an entry in the frst-level page table. */
#define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))#define pud_offset_phys(dir, addr)	(pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))#define pud_offset(dir, addr)		((pud_t *)__va(pud_offset_phys((dir), (addr))))

pud_index(addr) 宏用于计算给定地址 addr 在一级页表中的索引。它通过将地址右移 PUD_SHIFT 位,然后与 (PTRS_PER_PUD - 1) 进行按位与运算来计算索引值。

pud_offset_phys(dir, addr) 宏用于计算给定一级页表指针 dir 和地址 addr 对应的页上一级目录项(pud entry)的物理地址。它通过先读取 dir 指针指向的页全局目录项(pgd entry),然后获取其物理地址,再加上 pud_index(addr) 乘以 sizeof(pud_t) 的偏移量来计算目录项的物理地址。

pud_offset(dir, addr) 宏用于在给定的一级页表指针 dir 中计算地址 addr 对应的页上一级目录项的指针。它通过调用 pud_offset_phys 宏,并传递 dir 和地址 addr 来获得目录项的物理地址,并使用 __va 宏将其转换为虚拟地址,然后将其强制转换为 pud_t 类型的指针。

1.3 pmd_offset

pmd_offset用于在二级页表(second-level page table)中查找条目(entry)

/* Find an entry in the second-level page table. */
#define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))#define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))#define pmd_offset(dir, addr)		((pmd_t *)__va(pmd_offset_phys((dir), (addr))))

pmd_index(addr) 宏用于计算给定地址 addr 在二级页表中的索引。它通过将地址右移 PMD_SHIFT 位,然后与 (PTRS_PER_PMD - 1) 进行按位与运算来计算索引值。

pmd_offset_phys(dir, addr) 宏用于计算给定二级页表指针 dir 和地址 addr 对应的页中一级目录项(pmd entry)的物理地址。它通过先读取 dir 指针指向的页上一级目录项(pud entry),然后获取其物理地址,再加上 pmd_index(addr) 乘以 sizeof(pmd_t) 的偏移量来计算目录项的物理地址。

pmd_offset(dir, addr) 宏用于在给定的二级页表指针 dir 中计算地址 addr 对应的页中一级目录项的指针。它通过调用 pmd_offset_phys 宏,并传递 dir 和地址 addr 来获得目录项的物理地址,并使用 __va 宏将其转换为虚拟地址,然后将其强制转换为 pmd_t 类型的指针。

1.4 pte_offset_kernel

pte_offset_kernel用于在三级页表(third-level page table)中查找条目(entry)

/* Find an entry in the third-level page table. */
#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))#define pte_offset_kernel(dir,addr)	((pte_t *)__va(pte_offset_phys((dir), (addr))))

pte_index(addr) 宏用于计算给定地址 addr 在三级页表中的索引。它通过将地址右移 PAGE_SHIFT 位,然后与 (PTRS_PER_PTE - 1) 进行按位与运算来计算索引值。

pte_offset_phys(dir, addr) 宏用于计算给定三级页表指针 dir 和地址 addr 对应的物理页表项(pte entry)的物理地址。它通过先读取 dir 指针指向的页中一级目录项(pmd entry),然后获取其物理地址,再加上 pte_index(addr) 乘以 sizeof(pte_t) 的偏移量来计算页表项的物理地址。

pte_offset_kernel(dir, addr) 宏用于在给定的三级页表指针 dir 中计算地址 addr 对应的物理页表项的指针。它通过调用 pte_offset_phys 宏,并传递 dir 和地址 addr 来获得页表项的物理地址,并使用 __va 宏将其转换为虚拟地址,然后将其强制转换为 pte_t 类型的指针。

有一个等价的宏:

#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))

二、修改pte属性

2.1 set/clear_pte_bit

(1)硬件页表项描述符

// arch/arm64/include/asm/pgtable-hwdef.h/** Level 3 descriptor (PTE).*/
#define PTE_VALID		(_AT(pteval_t, 1) << 0)
#define PTE_TYPE_MASK		(_AT(pteval_t, 3) << 0)
#define PTE_TYPE_PAGE		(_AT(pteval_t, 3) << 0)
#define PTE_TABLE_BIT		(_AT(pteval_t, 1) << 1)
#define PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
#define PTE_RDONLY		(_AT(pteval_t, 1) << 7)		/* AP[2] */
#define PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
#define PTE_AF			(_AT(pteval_t, 1) << 10)	/* Access Flag */
#define PTE_NG			(_AT(pteval_t, 1) << 11)	/* nG */
#define PTE_DBM			(_AT(pteval_t, 1) << 51)	/* Dirty Bit Management */
#define PTE_CONT		(_AT(pteval_t, 1) << 52)	/* Contiguous range */
#define PTE_PXN			(_AT(pteval_t, 1) << 53)	/* Privileged XN */
#define PTE_UXN			(_AT(pteval_t, 1) << 54)	/* User XN */
#define PTE_HYP_XN		(_AT(pteval_t, 1) << 54)	/* HYP XN */

(2)bit55-58是硬件预留给软件使用:

// arch/arm64/include/asm/pgtable-prot.h/** Software defined PTE bits definition.*/
#define PTE_WRITE		(PTE_DBM)		 /* same as DBM (51) */
#define PTE_DIRTY		(_AT(pteval_t, 1) << 55)
#define PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
#define PTE_DEVMAP		(_AT(pteval_t, 1) << 57)
#define PTE_PROT_NONE		(_AT(pteval_t, 1) << 58) /* only when !PTE_VALID */

(3)

typedef u64 pteval_t;typedef struct { pteval_t pgprot; } pgprot_t;#define pgprot_val(x)	((x).pgprot)
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
{pte_val(pte) &= ~pgprot_val(prot);return pte;
}static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
{pte_val(pte) |= pgprot_val(prot);return pte;
}

两个内联函数,用于清除和设置页表项(page table entry)中的位:

clear_pte_bit 函数用于清除页表项 pte 中通过 pgprot_t 类型的 prot 参数指定的位。它通过对 pte 的值执行按位取反操作,然后与 prot 的值执行按位与操作,最后将结果返回。

set_pte_bit 函数用于设置页表项 pte 中通过 pgprot_t 类型的 prot 参数指定的位。它通过对 pte 的值执行按位或操作,使用 prot 的值作为掩码,将指定位设置为 1,最后将结果返回。

2.2 pte_wrprotect

static inline pte_t pte_wrprotect(pte_t pte)
{pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));return pte;
}

用于修改页表项的权限,将其设置为只读状态,以实现对页面的写保护。通过调用 clear_pte_bit 和 set_pte_bit 函数,可以方便地进行位操作,从而修改页表项的属性。

2.3 pte_mkwrite

static inline pte_t pte_mkwrite(pte_t pte)
{pte = set_pte_bit(pte, __pgprot(PTE_WRITE));pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));return pte;
}

用于修改页表项的权限,将其设置为可写状态,以实现对页面的写入操作。通过调用 set_pte_bit 和 clear_pte_bit 函数,可以方便地进行位操作,从而修改页表项的属性。

2.4 pte_mkclean

static inline pte_t pte_mkclean(pte_t pte)
{pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));return pte;
}

用于修改页表项的属性,将其标记为干净并设置为只读状态。通过调用 clear_pte_bit 和 set_pte_bit 函数,可以方便地进行位操作,从而修改页表项的属性。这样可以实现对页面的写保护,并将其标记为干净,以便在需要时进行页面回写操作。

2.5 pte_mkdirty

/** The following only work if pte_present(). Undefined behaviour otherwise.*/
#define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))

宏 pte_write(pte),用于检查页表项 pte 是否允许写入操作。
宏展开后的逻辑如下:
使用 pte_val(pte) 获取页表项 pte 的值。
执行位与操作 pte_val(pte) & PTE_WRITE,其中 PTE_WRITE 是一个位掩码,用于表示写权限的位。
使用双重取反 !! 将结果转换为布尔值,将非零值转换为 true,将零值转换为 false。

static inline pte_t pte_mkdirty(pte_t pte)
{pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));if (pte_write(pte))pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));return pte;
}

用于修改页表项的属性,将其标记为脏并根据需要取消只读状态。通过调用 set_pte_bit 和 clear_pte_bit 函数,可以方便地进行位操作,从而修改页表项的属性。这样可以在页面发生写入操作时标记页面为脏,并根据需要设置为可写状态。

三、set_pte_at

static inline void set_pte(pte_t *ptep, pte_t pte)
{WRITE_ONCE(*ptep, pte);/** Only if the new pte is valid and kernel, otherwise TLB maintenance* or update_mmu_cache() have the necessary barriers.*/if (pte_valid_not_user(pte)) {dsb(ishst);isb();}
}

set_pte,用于在指定地址处设置页表项(pte),该地址由页表项指针(ptep)表示。
函数的实现如下:
(1)使用 WRITE_ONCE 宏将 pte 的值写入 ptep 指向的内存位置。WRITE_ONCE 宏通常用于确保写操作不被编译器进行优化或重新排序,从而确保写操作仅执行一次。

(2)代码接着检查新的 pte 是否有效并且属于内核(而非用户级别的条目)。这通过使用 pte_valid_not_user 宏进行检查。如果条件为真,表示新的 pte 是有效的且与内核相关,则执行以下操作:
使用 dsb(ishst) 指令确保在 dsb 指令之前的所有内存访问完成后,再启动 dsb 指令之后的任何内存访问。这提供了内存访问顺序的保证。
使用 isb() 指令确保指令流同步,使得对页表项的任何更改立即生效。

static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,pte_t *ptep, pte_t pte)
{if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))__sync_icache_dcache(pte);__check_racy_pte_update(mm, ptep, pte);set_pte(ptep, pte);
}

内联函数 set_pte_at,用于在指定的地址处设置页表项,用于把pte页表项写入硬件页表。

函数的实现如下:
(1)首先,通过一系列条件判断语句检查新的页表项 pte 的属性:
使用 pte_present(pte) 判断页表项是否存在(present)。
使用 pte_user_exec(pte) 判断页表项是否允许用户执行(user exec)。
使用 pte_special(pte) 判断页表项是否是特殊类型(special)。

如果以上条件都满足,则调用 __sync_icache_dcache 函数,执行一些与页表项相关的同步操作。
(2)接着,调用 __check_racy_pte_update 函数,用于检查潜在的竞态条件(race condition)并处理页表项的更新。
(3)最后,调用 set_pte 函数,将新的页表项 pte 设置到指定地址处的页表项指针 ptep 上。

用于设置页表项,并处理一些与页表项更新相关的操作。它执行了一系列检查和同步操作,以确保页表项的正确性和一致性。

四、__flush_tlb_kernel_pgtable

/** Used to invalidate the TLB (walk caches) corresponding to intermediate page* table levels (pgd/pud/pmd).*/
static inline void __flush_tlb_kernel_pgtable(unsigned long kaddr)
{unsigned long addr = __TLBI_VADDR(kaddr, 0);dsb(ishst);__tlbi(vaae1is, addr);dsb(ish);isb();
}

内联函数 __flush_tlb_kernel_pgtable,用于刷新与中间页表级别(pgd/pud/pmd)对应的TLB(转换后备缓冲器)。

函数的实现如下:
(1)首先,根据内核地址 kaddr 使用 __TLBI_VADDR 宏计算出相应的虚拟地址 addr。

(2)使用 dsb(ishst) 指令确保在 dsb 指令之前的所有内存访问完成后,再启动 dsb 指令之后的任何内存访问。这提供了内存访问顺序的保证。

(3)调用 __tlbi 函数,使用 vaae1is 选项刷新与给定虚拟地址 addr 相关联的TLB项。这个操作将使TLB中的映射失效,需要重新进行地址转换。

(4)使用 dsb(ish) 指令确保在 dsb 指令之前的所有内存访问完成后,再启动 dsb 指令之后的任何内存访问。这提供了内存访问顺序的保证。

(5)使用 isb() 指令确保指令流同步,使得对TLB的任何更改立即生效。

这些指令(dsb、__tlbi、isb)用于刷新内核页表的TLB项,确保新的页表映射在地址转换时得到正确处理。TLB是用于加速虚拟地址到物理地址转换的高速缓存,当页表发生变化时,需要刷新TLB以保证正确的地址映射。该函数主要用于内核页表的维护和更新,以确保内存访问的一致性和正确性。

五、demo

接下来根据上面的知识来实现arm64平台下系统调用的hook:

#include <linux/init.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kallsyms.h> 
#include <linux/syscalls.h>
#include <asm/unistd.h>
#include <asm/ptrace.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>static pte_t *ptep;
static struct mm_struct *mm;static unsigned long *__sys_call_table;
static unsigned long mkdir_sys_call_addr;typedef long (*syscall_fn_t)(const struct pt_regs *regs);#ifndef __NR_mkdirat
#define __NR_mkdirat 34
#endif//用于保存原始的 mkdir 系统调用
static syscall_fn_t orig_mkdir;asmlinkage long mkdir_hook(const struct pt_regs *regs)
{printk("hook mkdir sys_call\n");//return orig_mkdir(regs);return 0;
}static void set_pte_write(void)
{pte_t pte;pte = READ_ONCE(*ptep);//清除pte的可读属性位//设置pte的可写属性位pte = pte_mkwrite(pte);//把pte页表项写入硬件页表钟set_pte_at(mm, mkdir_sys_call_addr, ptep, pte);//页表更新 和 TLB 刷新之间保持正确的映射关系//为了保持一致性,必须确保页表的更新和 TLB 的刷新是同步的__flush_tlb_kernel_pgtable(mkdir_sys_call_addr);}static void set_pte_rdonly(void)
{pte_t pte;pte = READ_ONCE(*ptep);//清除pte的可写属性位//设置pte的可读属性位pte = pte_wrprotect(pte);set_pte_at(mm, mkdir_sys_call_addr, ptep, pte);__flush_tlb_kernel_pgtable(mkdir_sys_call_addr);}//内核模块初始化函数
static int __init lkm_init(void)
{pgd_t *pgdp;pud_t *pudp;pmd_t *pmdp;/* can be directly found in kernel memory */mm = (struct mm_struct *)kallsyms_lookup_name("init_mm");if(mm == NULL)return -1;__sys_call_table = (unsigned long *)kallsyms_lookup_name("sys_call_table");if (!__sys_call_table)return -1;mkdir_sys_call_addr = (unsigned long)(__sys_call_table + __NR_mkdirat);pgdp = pgd_offset(mm, mkdir_sys_call_addr);if (pgd_none(READ_ONCE(*pgdp))) {printk(KERN_INFO "failed pgdp");return 0;}pudp = pud_offset(pgdp, mkdir_sys_call_addr);if (pud_none(READ_ONCE(*pudp))) {printk(KERN_INFO "failed pudp");return 0;}pmdp = pmd_offset(pudp, mkdir_sys_call_addr);if (pmd_none(READ_ONCE(*pmdp))) {printk(KERN_INFO "failed pmdp");return 0;}ptep = pte_offset_kernel(pmdp, mkdir_sys_call_addr);if (!pte_valid(READ_ONCE(*ptep))) {printk(KERN_INFO "failed pte");return 0;}//保存原始的系统调用:mkdirorig_mkdir = (syscall_fn_t)__sys_call_table[__NR_mkdirat];set_pte_write();__sys_call_table[__NR_mkdirat] = (unsigned long)mkdir_hook;set_pte_rdonly();printk("lkm_init\n");return 0;
}//内核模块退出函数
static void __exit lkm_exit(void)
{set_pte_write();__sys_call_table[__NR_mkdirat] = (unsigned long)orig_mkdir;set_pte_rdonly();printk("lkm_exit\n");
}module_init(lkm_init);
module_exit(lkm_exit);MODULE_LICENSE("GPL");

参考资料

Linux 5.4.18

http://www.lryc.cn/news/169006.html

相关文章:

  • elasticsearch14-高亮
  • HUAWEI华为MateBook X Pro 2021款 i7 集显(MACHD-WFE9Q)原装出厂Win10系统20H2
  • 21天学会C++:Day9----初识类与对象
  • 【深度学习】 Python 和 NumPy 系列教程(十七):Matplotlib详解:2、3d绘图类型(3)3D条形图(3D Bar Plot)
  • 基于Spring Boot+vue的酒店管理系统
  • Python 通过threading模块实现多线程
  • 用一个RecyclerView实现二级评论
  • 音视频 SDL简介
  • 7.前端·新建子模块与开发(自动生成)
  • Linux 创建目录
  • 【DIY小记】修复Win10启动出现蓝屏0xc0000185错误的一些方法
  • Linux 下的 10 个 PDF 软件
  • 浅谈redis分布式锁
  • 【Python保姆级教程】List容器
  • 微服务保护-授权规则
  • v-if失效原因
  • Chrome 基于 Wappalyzer 查看网站所用的前端技术栈
  • python的装饰器
  • P2P协议的传输艺术
  • 辅助驾驶功能开发-功能规范篇(21)-4-XP行泊一体方案功能规范
  • 家政服务小程序上门服务小程序预约上门服务维修保洁上门服务在线派单技师入口
  • LeetCode精选100题-【3数之和】-2
  • springboot集成mybatis-plus
  • 再想一想GPT
  • Blazor前后端框架Known-V1.2.15
  • Tomcat 的部署和优化
  • 后端中间件安装与启动(Redis、Nginx、Nacos、Kafka)
  • 【电子元件】常用电子元器件的识别之电阻器
  • 指针和数组笔试题讲解(2)
  • MapReduce YARN 的部署