当前位置: 首页 > news >正文

目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)

目标分类

  • 一、目标分类介绍
    • 1.1 二分类和多分类的区别
    • 1.2 单标签和多标签输出的区别
  • 二、代码获取
  • 三、数据集准备
  • 四、环境搭建
    • 4.1 环境测试
  • 五、模型训练
  • 六、模型测试
    • 6.1 多标签训练-单标签输出结果
    • 6.2 多标签训练-多标签输出结果

一、目标分类介绍

目标分类是一种监督学习任务,其目标是根据输入数据的特征将其分配到预定义的类别中。这种分类方法在许多实际应用中都有广泛的应用,如垃圾邮件检测、图像识别、情感分析等。

目标分类的基本流程包括:数据预处理(如清洗、标准化)、特征提取、模型选择和训练、模型评估和优化。其中,模型的选择和训练是关键步骤,常见的分类算法有决策树、支持向量机、神经网络等。

目标分类的优点是可以自动地进行分类,无需人工干预,同时也可以通过调整模型参数来提高分类的准确性。但是,目标分类也存在一些挑战,如数据的不平衡问题、过拟合问题等。

1.1 二分类和多分类的区别

二分类是指将样本分为两个类别,多分类是指将样本分为多个类别。在机器学习中,常见的分类算法有决策树、支持向量机、神经网络等。其中,决策树是一种基于规则的分类算法,支持向量机是一种基于间隔最大化的分类算法,神经网络是一种基于非线性映射的分类算法。对于多分类问题,可以采用一对多的模型,即将一个二分类器用于多个类别的预测;也可以采用多对多的模型,即将多个二分类器用于多个类别的预测 。

1.2 单标签和多标签输出的区别

单标签输出是指模型的输出只有一个预测值,即 f (x) = y。多标签输出是指模型的输出具有多个预测值,即 f (x_1,x_2,…,x_n) = y_1, y_2,…,y_n。在多标签分类中,每个输入样本需要零个或多个标签作为输出,同时需要输出 。

二、代码获取

  • 支持自定义数据集训练
  • 支持网络架构:resnet18,resnet50,mobilenet_v2,googlenet
  • 整套训练代码和测试代码(Pytorch版本)
  • 支持多种优化器选择
  • 支持选择多种损失函数:交叉熵、labelSmoothing、BCE等
  • 所有的配置文件写在yaml文件,更方便管理

在这里插入图片描述
在这里插入图片描述

三、数据集准备

在这里插入图片描述

四、环境搭建

安装python、torch、torchvision和pip安装requirements
安装python可以通过anaconda安装虚拟环境,python == 3.7.11
torch和torchvision版本是torch 1.8.0+cpu和torchvision 0.9.0+cpu

  • 如果安装gpu就去这里面下载对应的torch和torchvision的版本就行,需要先安装cuda
  • https://download.pytorch.org/whl/torch_stable.html

参考这篇博客:点击

4.1 环境测试

在这里插入图片描述
在这里插入图片描述

五、模型训练

在这里插入图片描述
然后运行python train.py即可开始训练。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、模型测试

在这里插入图片描述
在这里插入图片描述
设置以上五个地方。由于网络真实预测的时候,可能会出现一张图片包含多种分类的目标。考虑到这种情况就不能简单的用argmax来获取最大值的索引了,所以我们应该通过设置阈值来记录相应类别的索引,然后再根据索引回溯到我们原始的目标信息。
修改后的代码如下

	  # 单标签分类pred_index = np.argmax(prob_scores, axis=1)pred_score = np.max(prob_scores, axis=1)

修改为

    def filter_array(self, arr, threshold):# 获取满足条件的索引和值arr = arr.flatten()indices = np.where(arr >= threshold)[0]values = arr[indices]return indices, valuespred_index,pred_score = self.filter_array(prob_scores, threshold)

这里的阈值可以直接通过参数来进行设置。

在这里插入图片描述
在这里插入图片描述

6.1 多标签训练-单标签输出结果

如果只需要输出单个目标,需要修改成以下地方
在这里插入图片描述

6.2 多标签训练-多标签输出结果

修改成这样
在这里插入图片描述

http://www.lryc.cn/news/168850.html

相关文章:

  • 【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)
  • 2023华为产品测评官-开发者之声 | 华为云CodeArts征文活动,多重好礼邀您发声!
  • Python 图形化界面基础篇:获取文本框中的用户输入
  • 【驱动开发】实现三盏灯的控制,编写应用程序测试
  • Vue3+ElementUI使用
  • MySQL 和 MariaDB 版本管理的历史背景及差异
  • linux驱动开发--day4(字符设备驱动注册内部流程、及实现备文件和设备的绑定下LED灯实验)
  • elasticsearch5-RestAPI操作
  • 数据结构与算法(一)
  • Matlab--微积分问题的计算机求解
  • GRU实现时间序列预测(PyTorch版)
  • 文本框粘贴时兼容Unix、Mac换行符的方法源码
  • 2023年华为杯研究生数学建模竞赛辅导
  • post更新,put相当于删除重新增一条
  • python责任链模式
  • 大数据技术准备
  • 【力扣周赛】第 362 场周赛(⭐差分匹配状态压缩DP矩阵快速幂优化DPKMP)
  • 四大函数式接口(重点,必须掌握)
  • 2023Web前端逻辑面试题
  • uniapp中git忽略node_modules,unpackage文件
  • Json-Jackson和FastJson
  • RK3588 点亮imx586摄像头
  • C++---继承
  • 使用新版Maven-mvnd快速构建项目
  • 【ICASSP 2023】ST-MVDNET++论文阅读分析与总结
  • MySQL 面试题——MySQL 基础
  • JDK9特性——概述
  • 征战开发板从无到有(三)
  • Linux设备树详细学习笔记
  • 【系统架构】系统架构设计基础知识