当前位置: 首页 > news >正文

层次聚类分析

1、python语言

from scipy.cluster import hierarchy # 导入层次聚类算法
import matplotlib.pylab as plt
import numpy as np# 生成示例数据
np.random.seed(0)
data = np.random.random((20,1))# 使用树状图找到最佳聚类数
Z = hierarchy.linkage(data,method='weighted',metric='euclidean')
re = hierarchy.dendrogram(Z,color_threshold=0.2,above_threshold_color='#bcbddc')# 输出节点标签
print(re["ivl"])# 画图
plt.title('Dendrogram') # 标题
plt.xlabel('Customers') # 横标签
plt.ylabel('Euclidean distances') # 纵标签
plt.show()

dendrogram函数参数:

Z:层次聚类的结果,即通过scipy.cluster.hierarchy.linkage()函数计算得到的链接矩阵。
p:要显示的截取高度(y轴的阈值),可以用于确定划分群集的横线位置。
truncate_mode:指定截取模式。默认为None,表示不截取,可以选择 'lastp' 或 'mlab' 来截取显示。
labels:数据点的标签,以列表形式提供。
leaf_font_size:叶节点的字体大小。
leaf_rotation:叶节点的旋转角度。
show_leaf_counts:是否显示叶节点的数量。
show_contracted:是否显示合并的群集。
color_threshold:显示不同颜色的阈值,用于将不同群集算法聚类为不同颜色。
above_threshold_color:超过阈值的线段颜色。
orientation:图形的方向,可以选择 'top'、'bottom'、'left' 或 'right'。

假设我们输出Z值,获得以下结果:

from scipy.cluster import hierarchy # 导入层次聚类算法
import numpy as np
import pandas as pd# 生成示例数据
np.random.seed(0)
data = np.random.random((8,1))# 使用树状图找到最佳聚类数
Z = hierarchy.linkage(data,method='weighted',metric='euclidean')
row_dist_linkage = pd.DataFrame(Z,columns=['Row Label 1','Row Label 2','Distance','Item Number in Cluster'],index=['Cluster %d' % (i+1) for i in range(Z.shape[0])])
print("\nData Distance via Linkage: \n",row_dist_linkage)

其中,第一列和第二列代表节点标签,包含叶子和枝子;第三列代表叶叶(或叶枝,枝枝)之间的距离;第四列代表该层次类中含有的样本数(记录数)。注:因此,我们可以第三列距离结合图来确定不同簇的样本数量。这里的数量为(n-1),即样本总数减1。

2、R语言

setwd("D:/Desktop/0000/R") #更改路径df <- read.csv("iris.csv",header = T, row.names = 1) #读取工作路径文件
head(df) #查看前6行
hc <- hclust(dist(df))library(ggtree)ggtree(hc,layout="circular",branch.length = "daylight")+xlim(NA,3)+geom_tiplab2(offset=0.1,size=2)+#geom_text(aes(label=node))+geom_highlight(node = 152,fill="red")+geom_highlight(node=154,fill="steelblue")+geom_highlight(node=155,fill="green")+geom_cladelabel(node=152,label="virginica",offset=1.2,barsize = 2,vjust=-0.5,color="red")+geom_cladelabel(node=154,label="versicolor",offset=1.2,barsize = 2,hjust=1.2,color="steelblue")+geom_cladelabel(node=155,label="setosa",offset=1.2,barsize = 2,hjust=-1,color="green")

如果没有安装ggtree则先安装

install.packages("BiocManager")
BiocManager::install('ggtree')

除了上面这种方式外,我们还可以使用下面的方式获取(节点对齐):

setwd("D:/Desktop/0000/R") #更改路径
library(dendextend) #install.packages("dendextend")
library(circlize) #install.packages("circlize")df <- read.csv("iris.csv",header = T, row.names = 1) #读取工作路径文件
head(df) #查看前6行
aa <- hclust(dist(df))# 设置画布大小为4英寸宽,4英寸高
par(mar = c(4, 4, 2, 2) + 0.1)
png("output.png", width = 4, height = 4, units = "in", res = 600)hc <- as.dendrogram(aa) %>%set("branches_lwd", c(1.5)) %>% # 线条粗细set("labels_cex", c(.9)) # 字体大小# 颜色
hc <- hc %>%color_branches(k = 10) %>%  #树状分支线条颜色color_labels(k = 10)         #文字标签颜色# Fan tree plot with colored labels
circlize_dendrogram(hc,labels_track_height = NA,dend_track_height = 0.7)
# 结束绘图并关闭设备
dev.off()

文件数据样式:

更多学习视频:【R包使用】ggtree美化树状图_哔哩哔哩_bilibili、树状图展示聚类分析的结果_哔哩哔哩_bilibili

http://www.lryc.cn/news/168315.html

相关文章:

  • Jmeter性能实战之分布式压测
  • 学信息系统项目管理师第4版系列08_管理科学基础
  • 从2023蓝帽杯0解题heapSpary入门堆喷
  • 基于SSM的学生宿舍管理系统设计与实现
  • jvm 内存模型介绍
  • 用Jmeter进行压测详解
  • Mysql001:(库和表)操作SQL语句
  • 甲骨文全区登录地址
  • Java面试题第八天
  • 什么是同步容器和并发容器的实现?
  • 学Python的漫画漫步进阶 -- 第十六步
  • MySQL 8.0 OCP (1Z0-908) 考点精析-架构考点5:数据字典(Data Dictionary)
  • 7分钟了解ChatGPT是如何运作的
  • 蓝桥杯打卡Day8
  • React 学习笔记目录
  • 一起Talk Android吧(第五百五十一回:如何自定义SplashScreen)
  • PYTHON-模拟练习题目集合
  • UE5学习笔记(1)——从源码开始编译安装UE5
  • DP读书:《openEuler操作系统》(二)操作系统的发展史
  • SQL sever中相关查询
  • Java手写IO流和案例拓展
  • Linux入门教程||Linux 文件与目录管理
  • MyBatis获取参数值的两种方式#{}和${} 以及 获取参数值的各种情况
  • (手撕)数据结构--->堆
  • [运维|数据库] MySQL 中的COLLATE在 PostgreSQL如何表示
  • 【Linux】tar 与 zip 命令
  • VS2015+opencv 3.4.6开发环境
  • [运维|数据库] 将mysql的null.unix_timestamp(now()) * 1000转为PostgreSQL的语法
  • springboot使用filter增加全局traceId,方便日志查找
  • 面经学习三