当前位置: 首页 > news >正文

详解哈希,理解及应用

全文目录

  • 概念
  • 哈希冲突及原因
  • 解决哈希冲突的方法
    • 闭散列
      • 线性探测
      • 二次探测
      • 扩容
    • 开散列
      • 扩容
  • 哈希的应用
    • 位图
    • 布隆过滤器

概念

通过映射关系将关键字映射到存储位置,并实现增删改查操作。

在这里插入图片描述

通过上面的方法构造出来的结构就叫哈希表(散列表),其中的映射关系叫做哈希函数

哈希冲突及原因

不同的关键字映射到同一个位置称为哈希冲突

原因:

哈希函数设计得不够合理

哈希函数设计原则:

  • 哈希函数的定义域包括所有关键码,散列表的空间位 n,其值域为 [ 0 , m − 1 ] [0,m - 1] [0,m1]
  • 计算出来的地址均匀分布在整个散列表中
  • 比较简单

其他类型哈希:

哈希函数需要将关键码进行取模操作,这就表示了当其他类型哈希时需要先将关键字转换为整型 —— 可以通过仿函数进行转换。

解决哈希冲突的方法

解决哈希冲突两种常见的方法是:闭散列和开散列

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

寻找“下一个”空位置的方法:线性探测和二次探测

线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

在这里插入图片描述

缺点:

冲突连在一起容易发生数据堆积,不同的关键字占用了可利用的空位置,使得同一个效率下降,影响效率

二次探测

线性探测造成数据堆积的原因是寻找空位置的方式,为了避免数据堆积,二次探测寻找下一个位置的方式为:

H i = ( H 0 + i 2 ) % m H_i = (H_0 + i^2 ) \% m Hi=(H0+i2)%m, 或者: H i = ( H 0 − i 2 ) % m H_i = (H_0 - i^2 ) \% m Hi=(H0i2)%m。其中: i = 1 , 2 , 3 … i = 1,2,3… i=1,2,3 H 0 H_0 H0 是通过散列函数 H a s h ( x ) Hash(x) Hash(x) 对元素的关键码 k e y key key 进行计算得到的位置, m m m 是表的大小。

在这里插入图片描述

扩容

当哈希表的载荷因子达到一定大是进行扩容

在这里插入图片描述

开散列

开散列法又叫链地址法(开链法),将相同地址的关键字分为一个集合称为桶,通过单链表将桶中的元素链接起来。

在这里插入图片描述
在这里插入图片描述

扩容

随着插入的增加,冲突的可能性越来越大即一个桶中节点越来越多,影响哈希表的性能。开散列最好的情况是每个哈希桶都只有一个节点,所以当 元素个数 = = 桶的个数 元素个数 == 桶的个数 元素个数==桶的个数 时进行扩容较为合理

哈希的应用

位图

用一个比特位来存放某种状态,用来快速判断某个数据在不在。

模拟实现:

template<size_t N = 100>
class bitset
{
public:bitset(size_t n = N){_bit.resize(N / 8 + 1, 0);}bitset& set(size_t x, bool val = true){size_t i = x / 8;size_t j = x % 8;if (val){_bit[i] |= 1 << j;}else{_bit[i] &= ~(1 << j);}return *this;}bitset& set(){vector<char> tmp(N / 8 + 1, 1);_bit.swap(tmp);return *this;}bitset& reset(){vector<char> tmp(N / 8 + 1, 0);_bit.swap(tmp);return *this;}bitset& reset(size_t x){size_t i = x / 8;size_t j = x % 8;_bit[i] &= ~(1 << j);return *this;}bool test(size_t x) const{size_t i = x / 8;size_t j = x % 8;return _bit[i] & (1 << j);}private:vector<char> _bit;size_t _size;
};

缺点:

一般只能处理整型

布隆过滤器

用来快速检索数据是否存在,弥补位图只能处理整型的缺憾。

原理:

通过多个哈希函数,将一个数据映射到位图结构中。

但是可能对存在的情况存在一定的误判,误判概率取决于哈希函数的个数和空间的大小:参考文档

http://www.lryc.cn/news/167336.html

相关文章:

  • 解决js加减乘除精度丢失问题
  • 八股——const 关键字
  • QT object元对象
  • 互斥锁,条件变量,信号量的三个小demo
  • 【UE 材质】力场护盾和冲击波效果
  • 类和对象三大特性之多态
  • 为何红黑树在B/B+树之上仍然占据重要地位?
  • 【算法专题突破】滑动窗口 - 水果成篮(13)
  • Peppercontent.io:人工智能驱动的内容生成工具
  • docker镜像管理-实操
  • SpringMVC-----JSR303以及拦截器
  • 基于若依框架实现markdown在线编辑
  • CentOS7上从0开始搭建Zookeeper集群
  • 康耐视读码器DataMan软件详细使用步骤
  • 408强化(番外)文件管理
  • iptables 防火墙配置
  • 面试官:我们深入聊聊Java虚拟机吧
  • 【电源专题】案例:异常样机为什么只在40%以下电量时与其他样机显示电量差异10%,40%以上电量差异却都在5%以内。
  • React 全栈体系(七)
  • NVIDIA 显卡硬件支持的精度模式
  • 【Java|golang】210. 课程表 II---拓扑排序
  • STM32CubeMX systick bug?
  • 徐亦达机器学习:Kalman Filter 卡尔曼滤波笔记 (一)
  • Java和vue的包含数组组件contains、includes
  • OpenCV_CUDA_VS编译安装
  • 基于减法优化SABO优化ELM(SABO-ELM)负荷预测(Matlab代码实现)
  • 记录第一个启动代码的诞生
  • 基于STM32的简化版智能手表
  • 揭秘弹幕游戏制作
  • 2327. 知道秘密的人数;1722. 执行交换操作后的最小汉明距离;2537. 统计好子数组的数目