当前位置: 首页 > news >正文

10个简单但超级有用的Python装饰器

装饰器(Decorators)是Python中一种强大而灵活的功能,用于修改或增强函数或类的行为。装饰器本质上是一个函数,它接受另一个函数或类作为参数,并返回一个新的函数或类。它们通常用于在不修改原始代码的情况下添加额外的功能或功能。
装饰器的语法使用@符号,将装饰器应用于目标函数或类。下面我们将介绍10个非常简单但是却很有用的自定义装饰器。

@timer:测量执行时间
优化代码性能是非常重要的。@timer装饰器可以帮助我们跟踪特定函数的执行时间。通过用这个装饰器包装函数,我可以快速识别瓶颈并优化代码的关键部分。下面是它的工作原理:

 import timedef timer(func):def wrapper(*args, **kwargs):start_time = time.time()result = func(*args, **kwargs)end_time = time.time()print(f"{func.__name__} took {end_time - start_time:.2f} seconds to execute.")return resultreturn wrapper@timerdef my_data_processing_function():# Your data processing code here

将@timer与其他装饰器结合使用,可以全面地分析代码的性能。

@memoize:缓存结果
在数据科学中,我们经常使用计算成本很高的函数。@memoize装饰器帮助我缓存函数结果,避免了相同输入的冗余计算,显著加快工作流程:

 def memoize(func):cache = {}def wrapper(*args):if args in cache:return cache[args]result = func(*args)cache[args] = resultreturn resultreturn wrapper@memoizedef fibonacci(n):if n <= 1:return nreturn fibonacci(n - 1) + fibonacci(n - 2)

在递归函数中也可以使用@memoize来优化重复计算。

@validate_input 数据验证
数据完整性至关重要,@validate_input装饰器可以验证函数参数,确保它们在继续计算之前符合特定的标准:

 def validate_input(func):def wrapper(*args, **kwargs):# Your data validation logic hereif valid_data:return func(*args, **kwargs)else:raise ValueError("Invalid data. Please check your inputs.")return wrapper@validate_inputdef analyze_data(data):# Your data analysis code here

可以方便的使用@validate_input在数据科学项目中一致地实现数据验证。

@log_results: 日志输出
在运行复杂的数据分析时,跟踪每个函数的输出变得至关重要。@log_results装饰器可以帮助我们记录函数的结果,以便于调试和监控:

 def log_results(func):def wrapper(*args, **kwargs):result = func(*args, **kwargs)with open("results.log", "a") as log_file:log_file.write(f"{func.__name__} - Result: {result}\n")return resultreturn wrapper@log_resultsdef calculate_metrics(data):# Your metric calculation code here

将@log_results与日志库结合使用,以获得更高级的日志功能。

suppress_errors: 优雅的错误处理
数据科学项目经常会遇到意想不到的错误,可能会破坏整个计算流程。@suppress_errors装饰器可以优雅地处理异常并继续执行:

 def suppress_errors(func):def wrapper(*args, **kwargs):try:return func(*args, **kwargs)except Exception as e:print(f"Error in {func.__name__}: {e}")return Nonereturn wrapper@suppress_errorsdef preprocess_data(data):# Your data preprocessing code here

@suppress_errors可以避免隐藏严重错误,还可以进行错误的详细输出,便于调试。

确保数据分析的质量至关重要。@validate_output装饰器可以帮助我们验证函数的输出,确保它在进一步处理之前符合特定的标准:

 def validate_output(func):def wrapper(*args, **kwargs):result = func(*args, **kwargs)if valid_output(result):return resultelse:raise ValueError("Invalid output. Please check your function logic.")return wrapper@validate_outputdef clean_data(data):# Your data cleaning code here
这样可以始终为验证函数输出定义明确的标准。@retry:重试执行
@retry装饰器帮助我在遇到异常时重试函数执行,确保更大的弹性:import timedef retry(max_attempts, delay):def decorator(func):def wrapper(*args, **kwargs):attempts = 0while attempts < max_attempts:try:return func(*args, **kwargs)except Exception as e:print(f"Attempt {attempts + 1} failed. Retrying in {delay} seconds.")attempts += 1time.sleep(delay)raise Exception("Max retry attempts exceeded.")return wrapperreturn decorator@retry(max_attempts=3, delay=2)def fetch_data_from_api(api_url):# Your API data fetching code here

使用@retry时应避免过多的重试。

@visualize_results:漂亮的可视化
@visualize_results装饰器数据分析中自动生成漂亮的可视化结果

import matplotlib.pyplot as pltdef visualize_results(func):def wrapper(*args, **kwargs):result = func(*args, **kwargs)plt.figure()# Your visualization code hereplt.show()return resultreturn wrapper@visualize_resultsdef analyze_and_visualize(data):# Your combined analysis and visualization code here

@debug:调试变得容易
调试复杂的代码可能非常耗时。@debug装饰器可以打印函数的输入参数和它们的值,以便于调试:

 def debug(func):def wrapper(*args, **kwargs):print(f"Debugging {func.__name__} - args: {args}, kwargs: {kwargs}")return func(*args, **kwargs)return wrapper@debugdef complex_data_processing(data, threshold=0.5):# Your complex data processing code here

@deprecated:处理废弃的函数
随着我们的项目更新迭代,一些函数可能会过时。@deprecated装饰器可以在一个函数不再被推荐时通知用户:

 import warningsdef deprecated(func):def wrapper(*args, **kwargs):warnings.warn(f"{func.__name__} is deprecated and will be removed in future versions.", DeprecationWarning)return func(*args, **kwargs)return wrapper@deprecateddef old_data_processing(data):# Your old data processing code here

总结
装饰器是Python中一个非常强大和常用的特性,它可以用于许多不同的情况,例如缓存、日志记录、权限控制等。通过在项目中使用的我们介绍的这些Python装饰器,可以简化我们的开发流程或者让我们的代码更加健壮。

http://www.lryc.cn/news/167242.html

相关文章:

  • DataGrip 2023 年下载、安装教程、亲测可用
  • 6.SpringEL与List,Map
  • 【Oracle】使用 SQL Developer 连接 Oracle 数据库
  • PostgreSQL 事务并发锁
  • CANoe-Model Editor无法修改ARXML文件的问题、E2E在SOME/IP通信中的使用问题
  • Conan安装第三方依赖库时SSL验证失败解决办法
  • 基于springboot+vue的大学生智能消费记账系统
  • Java——》synchronized的使用
  • vue+element使用阿里的图标库保存图标
  • Day 01 web前端基础知识
  • Redis 高可用之持久化
  • 生成元 rust解法
  • 某ERP系统存在RCE漏洞
  • ElasticSearch 因为索引字段改变,平滑迁移索引
  • invalid use of incomplete type ‘class Ui::xxx‘
  • 变压器寿命预测(python代码,Logistic Regression模型预测效果一般,可以做对比实验)
  • 微信小程序-增加隐私协议弹窗
  • 分布式事务解决方案之可靠消息最终一致性
  • ROS学习笔记(四)---使用 VScode 启动launch文件运行多个节点
  • 编译Redis时报错: jemalloc/jemalloc.h: No such file or directory
  • LLM 05-大模型法律
  • 1-5 AUTOSAR数据交换文件ARXML
  • 学习尚硅谷HTML+CSS总结
  • 自己设计CPU学习之路——基于《Xilinx FPGA应用开发》
  • 数据结构与算法:树
  • Spark 【Spark SQL(一)DataFrame的创建、保存与基本操作】
  • 026-从零搭建微服务-文件服务(二)
  • Jenkins 页面部分显示Http状态403 被禁止
  • ajax day4
  • 8.Spring EL与ExpressionParser