当前位置: 首页 > news >正文

【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)

目录

一、前言

二、实验环境

三、PyTorch数据结构

0、分类

1、张量(Tensor)

1. 维度(Dimensions)

2. 数据类型(Data Types)

3. GPU加速(GPU Acceleration)


一、前言

ChatGPT:

        PyTorch是一个开源的机器学习框架,广泛应用于深度学习领域。它提供了丰富的工具和库,用于构建和训练各种类型的神经网络模型。下面是PyTorch的一些详细介绍:

  1. 动态计算图:PyTorch使用动态计算图的方式进行计算,这意味着在运行时可以动态地定义、修改和调整计算图,使得模型的构建和调试更加灵活和直观。

  2. 强大的GPU加速支持:PyTorch充分利用GPU进行计算,可以大幅提升训练和推理的速度。它提供了针对GPU的优化操作和内存管理,使得在GPU上运行模型更加高效。

  3. 自动求导:PyTorch内置了自动求导的功能,可以根据定义的计算图自动计算梯度。这简化了反向传播算法的实现,使得训练神经网络模型更加便捷。

  4. 大量的预训练模型和模型库:PyTorch生态系统中有许多预训练的模型和模型库可供使用,如TorchVision、TorchText和TorchAudio等,可以方便地加载和使用这些模型,加快模型开发的速度。

  5. 高级抽象接口:PyTorch提供了高级抽象接口,如nn.Modulenn.functional,用于快速构建神经网络模型。这些接口封装了常用的神经网络层和函数,简化了模型的定义和训练过程。

  6. 支持分布式训练:PyTorch支持在多个GPU和多台机器上进行分布式训练,可以加速训练过程,处理大规模的数据和模型。

        总体而言,PyTorch提供了一个灵活而强大的平台,使得深度学习的研究和开发更加便捷和高效。它的简洁的API和丰富的功能使得用户可以快速实现复杂的神经网络模型,并在各种任务中取得优秀的性能。

二、实验环境

        本系列实验使用如下环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib

关于配置环境问题,可参考前文的惨痛经历:

Anaconda搭建深度学习环境py 3.7:tensorflow-gpu2.3.0、pytorch1.12.1_gpu版本;(使用conda下载cuda和cudnn);配置环境经验总结_anaconda下载tensorflow_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/128841527?spm=1001.2014.3001.5502

三、PyTorch数据结构

0、分类

  • Tensor(张量):Tensor是PyTorch中最基本的数据结构,类似于多维数组。它可以表示标量、向量、矩阵或任意维度的数组。
    • Tensor的操作:PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
  • Variable(变量):Variable是对Tensor的封装,用于自动求导。在PyTorch中,Variable会自动跟踪和记录对其进行的操作,从而构建计算图并支持自动求导。在PyTorch 0.4.0及以后的版本中,Variable被废弃,可以直接使用Tensor来进行自动求导。
  • Dataset(数据集):Dataset是一个抽象类,用于表示数据集。通过继承Dataset类,可以自定义数据集,并实现数据加载、预处理和获取样本等功能。PyTorch还提供了一些内置的数据集类,如MNIST、CIFAR-10等,用于方便地加载常用的数据集。
  • DataLoader(数据加载器):DataLoader用于将Dataset中的数据按批次加载,并提供多线程和多进程的数据预读功能。它可以高效地加载大规模的数据集,并支持数据的随机打乱、并行加载和数据增强等操作。
  • Module(模块):Module是PyTorch中用于构建模型的基类。通过继承Module类,可以定义自己的模型,并实现前向传播和反向传播等方法。Module提供了参数管理、模型保存和加载等功能,方便模型的训练和部署。

1、张量(Tensor

1. 维度(Dimensions)

2. 数据类型(Data Types)

        

【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量):维度(Dimensions)、数据类型(Data Types)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/132909219?spm=1001.2014.3001.5501

3. GPU加速(GPU Acceleration)

        在PyTorch中,可以使用GPU加速来进行张量计算。GPU(图形处理器)是一种强大的硬件设备,可以并行处理大量数据,加速深度学习任务的执行。

        要在GPU上执行张量计算,首先需要确保您的系统具有兼容的GPU并安装了相应的GPU驱动程序和CUDA(Compute Unified Device Architecture)工具包。接下来,您可以使用以下步骤将张量移动到GPU上:

import torch# 检查GPU是否可用
if torch.cuda.is_available():# 创建一个张量并将其移动到GPU上tensor = torch.tensor([1, 2, 3])tensor = tensor.to('cuda')print(tensor)# 进行张量计算result = tensor * 2print(result)# 将张量移回CPUresult = result.to('cpu')print(result)
else:print("GPU不可用")

        在上述代码中,我们首先使用torch.cuda.is_available()检查GPU是否可用。如果可用,我们创建了一个包含整数值的张量,并使用to('cuda')方法将其移动到GPU上。然后,我们可以在GPU上执行张量计算。最后,我们可以使用to('cpu')将张量移回CPU,以便在CPU上进行后续处理。

        请注意,所有涉及张量操作的步骤都需要在同一个设备上执行,否则会引发错误。在执行计算之前,确保将所有张量移动到所需的设备上。

http://www.lryc.cn/news/167158.html

相关文章:

  • 多线程|多进程|高并发网络编程
  • 云计算——ACA学习 云计算分类
  • 3 分钟,带你了解低代码开发
  • 小白学Unity03-太空漫游游戏脚本,控制飞船移动旋转
  • 接口自动化测试推荐用什么框架?
  • 防火墙 FireWall
  • 【Linix-Day12-线程同步和线程安全】
  • C++中使用嵌套循环遍历多维数组
  • linux入门---命名管道
  • SpringBoot2.0入门(详细文档)
  • Aztec的隐私抽象:在尊重EVM合约开发习惯的情况下实现智能合约隐私
  • 【Vue】详细介绍Vue项目的目录结构及各个核心文件的示例代码
  • 【人大金仓】迁移MySql数据库到人大金仓,出现sys_config表重复
  • linux内核进程间通信IPC----消息队列
  • PHP实现微信小程序状态检测(违规、暂停服务、维护中、正在修复)
  • ubuntu在线直接升级
  • 学习笔记:卸载nav2 navigation2导航
  • 觉非科技数据闭环系列 | BEV感知研发实践
  • 程序员情绪把控
  • 弱监督目标检测:ALWOD: Active Learning for Weakly-Supervised Object Detection
  • 驱动开发 day3
  • 许可license分析 第一章
  • Goby 漏洞发布|管家婆订货易在线商城 SelectImage.aspx 文件上传漏洞
  • Android屏幕录制
  • 实在智能牵手埃林哲,“TARS-RPA-Agent+云时通”双剑合璧共推企业数字化转型
  • 拥有这个中文版CustomGPT,你也能定制自己的AI问答机器人
  • fastadmin 基本使用配置
  • netty 线程组
  • Reactor 第十二篇 WebFlux集成PostgreSQL
  • 红队打靶:Me and My Girlfriend打靶思路详解(vulnhub)