当前位置: 首页 > news >正文

2023牛客暑假多校第四场(补题向题解:J)

终于有时间来慢慢补补题了

J Qu’est-ce Que C’est?

作为队内的dp手,赛时想了好久,等学弟学妹都出了还是不会,羞愧,还好最终队友做出来了。
链接J Qu’est-ce Que C’est?

题意

长度为 n n n 的数组 a a a,每个数的取值范围 a i = [ − m , m ] a_i = [-m, m] ai=[m,m],问所有满足长度 > 1 >1 >1 的子段的和为非负数的数组可能的数量。 1 ≤ n , m ≤ 5000 1\leq n,m\leq 5000 1n,m5000

思路

看了懵哥的题解,看到状态定义后就会了,我怎么就想不到呢?
法一
dp状态定义 f [ i ] [ j ] : f[i][j]: f[i][j]: i i i 个数,最小后缀和为 j j j 的方案数 j = [ − 5000 , 5000 ] j = [-5000, 5000] j=[5000,5000]。因为是最小后缀和,那么如果有后缀 < − 5000 <-5000 <5000 的说明至少是两个数以上的和为负数,与题意不符是不合法的方案,所以数组大小开到 [ 0 , 10000 ] [0,10000] [0,10000] 即可(离散化后)。

我们先不管时间复杂度,根据dp定义先敲个状态转移出来,代码如下:

#include <bits/stdc++.h>
using namespace std;#define ll long longconst int N = 5010, mod = 998244353;int f[N][N * 2]; // 前i个数,最小后缀和为j的方案数 j = [-5000, 5000]void add(int& a, int b){a = (a + b) % mod;
}
int main(){int n, m;cin >> n >> m;f[0][2 * m] = 1;for(int i = 1; i <= n; i ++){for(int j = -m; j <= m; j ++){ // 枚举最小后缀for(int k = m; k >= -m; k --){ // 枚举当前a_i选哪个数if(j + k < 0) break;add(f[i][min(j + k, k) + m], f[i - 1][j + m]);}}}int ans = 0;for(int i = -m; i <= m; i ++){add(ans, f[n][i + m]);}cout << ans;return 0;
}

时间复杂度为 O ( n 3 ) O(n^3) O(n3),我们观察一下代码如何优化,发现会有大量连续的 k k k f [ i ] [ min ⁡ ( j + k , k ) ] f[i][\min(j + k, k)] f[i][min(j+k,k)] 加的是同一个状态 f [ i − 1 ] [ j ] f[i - 1][j] f[i1][j]。那么经典优化方案不就来了吗,差分前缀和优化。

以下分情况讨论:
因为是 min ⁡ ( j + k , k ) \min(j + k, k) min(j+k,k)

  1. j j j 是非正数
    无论当前 k k k 选什么, j + k ≤ k j + k \leq k j+kk,所以状态一定是转移到 j + k j + k j+k,所以对于一个非正数的 j j j 可转移的范围就是 0 ∼ j + m 0 \sim j + m 0j+m
// 区间 [l, r] + val  f_l + val  f_{r + 1} + val
for(int j = -m; j <= 0; j ++){f[i][m] = (f[i][m] + f[i - 1][j + m]) % mod;// 差分 +f[i][m + j + m + 1] = (f[i][m + j + m + 1] + mod - f[i - 1][j + m]) % mod;// 差分 -
}
  1. j j j 是正数
    同理无论当前 k k k 选什么, k ≤ j + k k \leq j + k kj+k,所以状态一定是转移到 k k k,所以对于一个正数 j j j,可以转移的范围就是 − j ∼ m -j\sim m jm
for(int j = 1; j <= m; j ++){f[i][-j + m] = (f[i][-j + m] + f[i - 1][j + m]) % mod;f[i][m + m + 1] = (f[i][m + m + 1] + mod - f[i - 1][j + m]) % mod;
}

完整代码

#include <bits/stdc++.h>
using namespace std;#define ll long longconst int N = 5010, mod = 998244353;int f[N][N * 2]; // 前i个数,最小后缀和为j的方案数 j = [-5000, 5000]void add(int& a, int b){a = (a + b) % mod;
}
int main(){int n, m;cin >> n >> m;f[0][2 * m] = 1;for(int i = 1; i <= n; i ++){/*for(int j = -m; j <= m; j ++){for(int k = m; k >= -m; k --){if(j + k < 0) break;add(f[i][min(j + k, k) + m], f[i - 1][j + m]);}}*/// 考虑差分前缀和优化// j 是 负数 k 是正数 f[i][j + k + m] 从0 ~ m + j// j 是 正数 k 是负数/正数 f[i][k + m] 从-j ~ mfor(int j = -m; j <= 0; j ++){f[i][m] = (f[i][m] + f[i - 1][j + m]) % mod; // 差分 +f[i][m + j + m + 1] = (f[i][m + j + m + 1] + mod - f[i - 1][j + m]) % mod; // 差分 -}for(int j = 1; j <= m; j ++){f[i][-j + m] = (f[i][-j + m] + f[i - 1][j + m]) % mod;f[i][m + m + 1] = (f[i][m + m + 1] + mod - f[i - 1][j + m]) % mod;}for(int j = -m + 1; j <= m; j ++){ // 前缀和f[i][j + m] = (f[i][j + m] + f[i][j + m - 1]) % mod;}}int ans = 0;for(int i = -m; i <= m; i ++){add(ans, f[n][i + m]);}cout << ans;return 0;
}
http://www.lryc.cn/news/162827.html

相关文章:

  • 第 362 场 LeetCode 周赛题解
  • C++ if 语句
  • 业务安全及实战案例
  • 十一)Stable Diffussion使用教程:人物三视图
  • 超级等级福利礼包
  • 如何用Jmeter提取和引用Token
  • C#文件拷贝工具
  • Redis——Java中的客户端和API
  • Brief. Bioinformatics2021 | sAMP-PFPDeep+:利用三种不同的序列编码和深度神经网络预测短抗菌肽
  • 问道管理:华为产业链股再度拉升,捷荣技术6连板,华力创通3日大涨近70%
  • 面试设计模式-责任链模式
  • Qt 开发 CMake工程
  • 2.k8s账号密码登录设置
  • 【代表团坐车】Python 实现-附ChatGPT解析
  • 【Java】x-easypdf: 一种简单易用的PDF处理库
  • 1 Linux输入子系统
  • Zabbix 利用 Grafana 进行图形展示
  • 【LeetCode周赛】LeetCode第362场周赛
  • Leetcode128. 最长连续序列
  • K8S:kubeadm搭建K8S+Harbor 私有仓库
  • MaskVO: Self-Supervised Visual Odometry with a Learnable Dynamic Mask 论文阅读
  • 面试求职-面试注意事项
  • sm2 签名验签
  • 如何检查Windows 11笔记本电脑电池健康状况
  • 编程大师-分布式
  • 内网隧道代理技术(二十三)之 DNS隧道反弹Shell
  • 如何利用Socks5代理IP提升网络安全与跨境电商业务
  • 信号量(Semaphore)
  • <el-input-number>显示两位数字;如果是一位数字的话前面补0
  • 基于SSM的鲜花商城系统【附源码文档】