当前位置: 首页 > news >正文

OpenCV 12(图像直方图)

一、图像直方图

 直方图可以让你了解总体的图像像素强度分布,其X轴为像素值(一般范围为0~255),在Y轴上为图像中具有该像素值像素数。

- 横坐标: 图像中各个像素点的灰度级.
- 纵坐标: 具有该灰度级的像素个数.


 

画出上图的直方图:

或者以柱状图的形式:

- 归一化直方图

  - 横坐标: 图像中各个像素点的灰度级

  - 纵坐标: 出现这个灰度级的概率

- **直方图术语**: 
  `dims`:需要统计的特征的数目。例如:`dims=1`,表示我们仅统计灰度值。 
  `bins`:每个特征空间子区段的数目。 

  `range`:统计灰度值的范围, 一般为[0, 255]

1.1 使用OpenCV统计直方图

- calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

  - images: 原始图像
  - channels: 指定通道.
    - 需要用中括号括起来, 输入图像是灰度图像是, 值是[0], 彩色图像可以是[0], [1], [2], 分别对应B,G,R.
  - mask: 掩码图像

    - 统计整幅图像的直方图, 设为None
    - 统计图像某一部分的直方图时, 需要掩码图像.

- histSize: BINS的数量

     - 需要用中括号括起来, 例如[256]  

- ranges: 像素值范围, 例如[0, 255]
 - accumulate: 累积标识

    - 默认值为False
    - 如果被设置为True, 则直方图在开始分配时不会被清零.
    - 该参数允许从多个对象中计算单个直方图, 或者用于实时更新直方图.
    - 多个直方图的累积结果, 用于对一组图像计算直方图. 

  import cv2import matplotlib.pyplot as pltlena = cv2.imread('./lena.png')hist = cv2.calcHist([lena], [0], None, [256], [0, 255])print(type(hist))print(hist.size)print(hist.shape)print(hist)

1.2 使用OpenCV绘制直方图

可以利用matplotlib把OpenCV统计得到的直方图绘制出来.

import cv2
import matplotlib.pyplot as plt
lena = cv2.imread('./lena.png')histb = cv2.calcHist([lena], [0], None, [256], [0, 255])
histg = cv2.calcHist([lena], [1], None, [256], [0, 255])
histr = cv2.calcHist([lena], [2], None, [256], [0, 255])plt.plot(histb, color='b')
plt.plot(histg, color='g')
plt.plot(histr, color='r')
plt.show()

 

 

1.3  使用掩膜的直方图

- 掩膜

 

- 如何生成掩膜
  - 先生成一个全黑的和原始图片大小一样大的图片.  

mask = np.zeros(image.shape, np.uint8)


  - 将想要的区域通过索引方式设置为255.

mask[100:200, 200: 300] = 255  #255 白色

import cv2
import matplotlib.pyplot as plt
lena = cv2.imread('./lena.png')
gray = cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY)mask = np.zeros(gray.shape, np.uint8)
mask[200:400, 200: 400] = 255
hist_mask = cv2.calcHist([gray], [0], mask, [256], [0, 255])
hist_img = cv2.calcHist([gray], [0], None, [256], [0, 255])
plt.plot(hist_mask)
plt.plot(hist_img)cv2.imshow('mask', cv2.bitwise_and(gray, gray, mask=mask))
cv2.waitKey(0)
cv2.destroyAllWindows()

二、直方图均衡化原理

直方图均衡化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的目的。对比度较低的图像适合使用直方图均衡化方法来增强图像细节。

 

原理:

1. 计算累计直方图

累计直方图:对概率进行累计

2. 累计直方图进行区间转换

3. 在累计直方图中, 概率相近的原始值, 会被处理为相同的值

- equalizeHist(src[, dst])
  - src 原图像
  - dst 目标图像, 即处理结果

import cv2
import matplotlib.pyplot as plt
lena = cv2.imread('./lena.png')
gray = cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY)# lena变黑
gray_dark = gray - 40
# lena变亮
gray_bright = gray + 40# 查看各自的直方图
hist_gray = cv2.calcHist([gray], [0], None, [256], [0, 255])
hist_dark = cv2.calcHist([gray_dark], [0], None, [256], [0, 255])
hist_bright = cv2.calcHist([gray_bright], [0], None, [256], [0, 255])plt.plot(hist_gray)
plt.plot(hist_dark)
plt.plot(hist_bright)# 进行均衡化处理
dark_equ = cv2.equalizeHist(gray_dark)
bright_equ = cv2.equalizeHist(gray_bright)
cv2.imshow('gray_dark', np.hstack((gray_dark, dark_equ)))
cv2.imshow('gray_bright', np.hstack((gray_bright, bright_equ)))
cv2.waitKey(0)
cv2.destroyAllWindows()

http://www.lryc.cn/news/161319.html

相关文章:

  • LeetCode 面试题 03.06. 动物收容所
  • 快速理解DDD领域驱动设计架构思想-基础篇 | 京东物流技术团队
  • C++学习笔记(堆栈、指针、命名空间、编译步骤)
  • Rust Yew应用开发的事件初探
  • 高并发下单例线程安全
  • 【EKF】EKF原理
  • 蓝桥杯官网填空题(古堡算式)
  • Python---集合set
  • LORA项目源码解读
  • Azure + React + ASP.NET Core 项目笔记一:项目环境搭建(一)
  • html 学习 之 文本标签
  • 联发科3纳米芯片预计2024年量产,此前称仍未获批给华为供货
  • 搭建vue3项目并git管理
  • 【Azure OpenAI】OpenAI Function Calling 101
  • 立晶半导体Cubic Lattice Inc 专攻音频ADC,音频DAC,音频CODEC,音频CLASS D等CL7016
  • 【Flutter】支持多平台 多端保存图片到本地相册 (兼容 Web端 移动端 android 保存到本地)
  • postgresql 安装教程
  • 手写数据库连接池
  • 在CentOS7上增加swap空间
  • @Autowired和@Resource
  • QTableView通过setColumnWidth设置了列宽无效的问题
  • 【用unity实现100个游戏之10】复刻经典俄罗斯方块游戏
  • Docker容器内数据备份到系统本地
  • 学信息系统项目管理师第4版系列06_项目管理概论
  • Java发送(QQ)邮箱、验证码发送
  • PostgresSQL----基于Kubernetes部署PostgresSQL
  • 7 个适合初学者的项目,可帮助您开始使用 ChatGPT
  • JDBC操作SQLite的工具类
  • SEO百度优化基础知识全解析(了解百度SEO标签作用)
  • 用python实现基本数据结构【03/4】