当前位置: 首页 > news >正文

【EKF】EKF原理

原理简述

卡尔曼滤波可以在线性模型,误差为高斯模型的情况下,对目标状态得出很好的估计效果,但如果系统存在非线性的因素,其效果就没有那么好了。比较典型的非线性函数关系包括平方关系,对数关系,指数关系,三角函数关系等

对于非线性系统的问题,比较常用的方法是将非线性的部分进行线性化处理,其中,EKF 就是对非线性系统进行线性化,使用泰勒展开式,略去二阶及以上项(数据较小),得到一个近似的线性化模型,然后应用卡尔曼滤波完成估计。

EKF与KF的对比推导

卡尔曼滤波的五个公式:

泰勒展开式为:

在 EKF 中,泰勒展开式只保留前两项,即:

f(x) ≈ f(x0) + f'(x0)*(x - x0)

在进行展开时,将估计值作为 x0 ,因为估计值是确定的值,实际状态 x 作为 x来展开

对泰勒展开式来说,f(x0) 相当于是常数项。

估计方程与量测方程

线性卡尔曼滤波的离散估计状态方程与量测方程为:

其中 z(k) 为量测值,H 为量测值与状态 x 之间的关系矩阵。

在 EKF 中,将等式右侧的项都看作是一个非线性函数,也就是状态方程中,将等式右边的关于x_hat 与 u 关系式都记作 f,量测方程中,等式右边的函数关系记作是 h 即:

其中,f 是非线性状态函数,h 是非线性量测函数,w 与 v 分别是高斯噪声,协方差矩阵为 Q 与 R,在上式中省略了。

在 EKF 的求解中,将 f 与 h 进行泰勒展开,f(x0)与h(x0) 当作是常数项,x0 代入 x_hat,然后只保留前两项(在 x_hat(k) 处进行展开),将一阶偏导数分别记作 F 与 H,后续的卡尔曼公式会用到 F 与 H,其实 F 与 H 都是雅可比矩阵:

将偏导部分记作 F:

量测方程的非线性函数展开为:

将偏导部分记作 H:

结合上面的非线性方程,之后将线性化的泰勒展开式代入上面的非线性方程。

状态估计方程

即,将非线性函数,在上次估计值 x_hat(k-1) 处进行泰勒展开,其中,f(x_hat(k-1)) 就是上一次的先验估计值,与 F*x_hat(k-1) 都是非随机值,将两个非随机值提出,得到:

量测方程

x_mea 为量测状态,同样的,将非随机值提出,得到:

协方差矩阵与卡尔曼增益

根据先验估计的表达式,由 F 来代替,可以得出先验误差的协方差公式:

卡尔曼增益为:

后验估计与协方差矩阵更新

后验估计与协方差矩阵都与KF是相同的。

后验估计 = 先验估计值 + 卡尔曼增益*(量测值 - 先验估计输出):

更新协方差:

EKF的更新公式

预测

先验估计值计算:

先验误差协方差计算:

校正

卡尔曼增益计算:

后验估计值计算:

更新估计误差协方差:

一维非线性例子

这里直接采用了一本书上的比较典型的非线性例子,假设系统方程包含非线性项:

x(k) = 0.5*x(k-1) + 2.5*x(k-1) / (1 + x(k-1)^2) + 8*cos(1.2k) + w(k)

其中 w 为系统过程噪声。

观测方程为:

z(k) = x(k)^2 / 20 + v(k)

其中 v 为测量噪声

在上述例子中,系统方程与观测方程都包含非线性部分,在求解时,可以按照如下步骤:

1)状态预测,计算先验估计值

x(k)- = 0.5*x(k-1) + 2.5*x(k-1) / (1 + x(k-1)^2) + 8*cos(1.2k)

2)将上一步计算的先验估计值代入F与H更新线性化方程的偏导雅可比矩阵,分式求导法则: (u/v)' = (u'v-uv')/v²

F = 0.5 + (2.5 * (1+x^2) - 2.5*x*2*x) / (1+x^2)^2 = 0.5 + 2.5*(1-x^2) / (1+x^2)^2

H = x/10

3)求协方差矩阵的预测矩阵 Pk-

4)求卡尔曼滤波增益K

5)更新状态

例如:xt 为上时刻的估计状态,x为当前的先验估计值,则:

h(x) = h(xt) + H*(x - xt)

6)更新协方差 Pk

在实际测试中,将量测值加入一定范围的噪声,最后的效果如图:

http://www.lryc.cn/news/161313.html

相关文章:

  • 蓝桥杯官网填空题(古堡算式)
  • Python---集合set
  • LORA项目源码解读
  • Azure + React + ASP.NET Core 项目笔记一:项目环境搭建(一)
  • html 学习 之 文本标签
  • 联发科3纳米芯片预计2024年量产,此前称仍未获批给华为供货
  • 搭建vue3项目并git管理
  • 【Azure OpenAI】OpenAI Function Calling 101
  • 立晶半导体Cubic Lattice Inc 专攻音频ADC,音频DAC,音频CODEC,音频CLASS D等CL7016
  • 【Flutter】支持多平台 多端保存图片到本地相册 (兼容 Web端 移动端 android 保存到本地)
  • postgresql 安装教程
  • 手写数据库连接池
  • 在CentOS7上增加swap空间
  • @Autowired和@Resource
  • QTableView通过setColumnWidth设置了列宽无效的问题
  • 【用unity实现100个游戏之10】复刻经典俄罗斯方块游戏
  • Docker容器内数据备份到系统本地
  • 学信息系统项目管理师第4版系列06_项目管理概论
  • Java发送(QQ)邮箱、验证码发送
  • PostgresSQL----基于Kubernetes部署PostgresSQL
  • 7 个适合初学者的项目,可帮助您开始使用 ChatGPT
  • JDBC操作SQLite的工具类
  • SEO百度优化基础知识全解析(了解百度SEO标签作用)
  • 用python实现基本数据结构【03/4】
  • 软件测试面试题汇总
  • AP5101C 高压线性恒流IC 宽电压6-100V LED汽车大灯照明 台灯LED矿灯 指示灯电源驱动
  • 【大数问题】字符串相减(大数相减)<模拟>
  • easycode生成代码模板配置
  • 【数据结构】堆排序和Top-k问题
  • 经典的生产者和消费者模型问题