当前位置: 首页 > news >正文

yolov7简化yaml配置文件

yolov7代码结构简单,效果还好,但是动辄超过70几个模块的配置文件对于想要对网络进行魔改的朋友还是不怎么友好的,使用最小的tiny也有77个模块

代码的整体结构简单,直接将ELAN结构化写成一个类就能像yolov5一样仅仅只有20几个模块,方便对网络结构进行魔改,看着也不容易头晕。

v7的网络结构可以参看:理解yolov7网络结构_yolov7的常用anchor_athrunsunny的博客-CSDN博客

这里先放一张改好的网络结构运行结果

好,上主菜,这里对tiny的结构进行修改,v7的修改类似就是在ELAN这个类中增加卷积层就行

先创建配置文件yolov7-tiny-ELAN.yaml

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multipleactivation: nn.ReLU()
# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# yolov7-tiny backbone
backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True[[-1, 1, Conv, [32, 3, 2, None, 1]],  # 0-P1/2[-1, 1, Conv, [64, 3, 2, None, 1]],  # 1-P2/4[-1, 1, ELAN, [64, 1, 1, None, 1]],  # 2[-1, 1, MP, []],  # 3-P3/8[-1, 1, ELAN, [128, 1, 1, None, 1]],  # 4[-1, 1, MP, []],  # 5-P4/16[-1, 1, ELAN, [256, 1, 1, None, 1]],  # 6[-1, 1, MP, []],  # 7-P5/32[-1, 1, ELAN, [512, 1, 1, None, 1]],  # 8]# yolov7-tiny head
head:[[-1, 1, SPPCSPCSIM, [256]], # 9[-1, 1, Conv, [128, 1, 1, None, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[6, 1, Conv, [128, 1, 1, None, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]], # 13[-1, 1, ELAN, [128, 1, 1, None, 1]],  # 14[-1, 1, Conv, [64, 1, 1, None, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[4, 1, Conv, [64, 1, 1, None, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, ELAN, [64, 1, 1, None, 1]],  # 19[-1, 1, Conv, [128, 3, 2, None, 1]],[[-1, 14], 1, Concat, [1]],[-1, 1, ELAN, [128, 1, 1, None, 1]],  # 22[-1, 1, Conv, [256, 3, 2, None, 1]],[[-1, 9], 1, Concat, [1]],[-1, 1, ELAN, [256, 1, 1, None, 1]],  # 25[19, 1, Conv, [128, 3, 1, None, 1]],[22, 1, Conv, [256, 3, 1, None, 1]],[25, 1, Conv, [512, 3, 1, None, 1]],[[26,27,28], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)]

在common.py中增加

class ELAN(nn.Module):# Yolov7 ELAN with args(ch_in, ch_out, kernel, stride, padding, groups, activation)def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super().__init__()c_ = int(c2 // 2)c_out = c_ * 4self.cv1 = Conv(c1, c_, k=k, s=s, p=p, g=g, act=act)self.cv2 = Conv(c1, c_, k=k, s=s, p=p, g=g, act=act)self.cv3 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)self.cv4 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)self.cv5 = Conv(c_out, c2, k=k, s=s, p=p, g=g, act=act)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x)x3 = self.cv3(x2)x4 = self.cv4(x3)x5 = torch.cat((x1, x2, x3, x4), 1)return self.cv5(x5)class SPPCSPCSIM(nn.Module):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):super(SPPCSPCSIM, self).__init__()c_ = int(2 * c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])self.cv3 = Conv(4 * c_, c_, 1, 1)self.cv4 = Conv(2 * c_, c2, 1, 1)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x)x3 = torch.cat([x2] + [m(x2) for m in self.m], 1)x4 = self.cv3(x3)x5 = torch.cat((x1, x4), 1)return self.cv4(x5)

在yolo.py中的parse_model中增加

        if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, SPPCSPC, RepConv,RFEM, ELAN, SPPCSPCSIM):c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:args.insert(2, n)  # number of repeatsn = 1

使用 yolov7-tiny-ELAN.yaml在yolo.py中运行就能看到上面结构精简后的网络结构图。

http://www.lryc.cn/news/160837.html

相关文章:

  • pprof火焰图性能优化
  • Greenplum 查找数据目录占用最大的表
  • Java 基于 SpringBoot 的酒店管理系统,附源码和数据库
  • LinkedList(4):多线程LinkedList 不安全情况
  • 3D印刷电路板在线渲染查看工具
  • 【mysql】出现 slow sql 问题及建议
  • element树形筛选
  • 打字侠:一款专业的中文打字网站
  • C++ std::default_random_engine的使用
  • 软件设计模式(二):工厂、门面、调停者和装饰器模式
  • pdf文件签名的问题解决
  • Node.js安装使用
  • sql:SQL优化知识点记录(七)
  • 机器学习:基于梯度下降算法的线性拟合实现和原理解析
  • 关键点数据增强
  • 最小化安装移动云大云操作系统--BCLinux-for-Euler-22.10-everything-x86_64-230316版
  • 003传统图机器学习、图特征工程
  • Apache Tomcat 漏洞复现
  • Oracle-常用权限-完整版
  • jenkins 发布job切换不同的jdk版本/ maven版本
  • 如何在小程序中给会员设置备注
  • PaddleOCR学习笔记2-初步识别服务
  • 【Opencv】Pyhton 播放上一帧,下一帧,存video,逐帧分析
  • 【关于Java:认识异常】
  • 【C++ • STL • 力扣】详解string相关OJ
  • 【Tomcat服务部署及优化】
  • C++之红黑树
  • Go语言网络编程(socket编程)TCP
  • C语言——局部和全局变量
  • 【Java基础篇 | 类和对象】--- 聊聊什么是内部类