当前位置: 首页 > news >正文

【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[1]【Matlab代码#57】

文章目录

    • 【`获取资源`请见文章第5节:资源获取】
    • 1. 原始POA算法
    • 2. 改进后的IPOA算法
      • 2.1 Sine映射种群初始化
      • 2.2 融合改进的正余弦策略
      • 2.3 Levy飞行策略
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取


获取资源请见文章第5节:资源获取】


1. 原始POA算法

此算法详细介绍请参考POA算法介绍

2. 改进后的IPOA算法

2.1 Sine映射种群初始化

混沌映射可以使种群在搜索空间中的分布更加均匀,因此被广泛使用。其中,Sine映射是一种不错的映射方式,其数学表达式为:
x n + 1 = a 4 s i n ( π ∗ x n ) (1) x_{n+1}=\frac{a}{4}sin(\pi*x_{n})\tag1 xn+1=4asin(πxn)(1)

2.2 融合改进的正余弦策略

正余弦优化算法利用正余弦函数的周期性波动构造迭代方程,实现全局搜索和局部开发两个阶段的功能。具体的迭代方程分为以下两类正弦迭代或迭代余弦方程:
在这里插入图片描述
其中, t t t为当前迭代次数, X i j ( t ) X_{i}^{j}(t) Xij(t)表示第 t t t次迭代时第 i i i个个体的第 j j j维变量, r 1 r_{1} r1 r 3 r_{3} r3表示[0,1]之间的随机数, r 2 r_{2} r2表示[0,2π]之间的随机数, P b e s t ( t ) P_{best}(t) Pbest(t)表示第 t t t次迭代的最优解。
为了进一步提高POA算法的全局开发能力,在引入了正余弦策略的基础上,还加入了鲸鱼优化算法的螺旋更新策略。

2.3 Levy飞行策略

在原始POA算法的探索阶段,容易陷入局部最优,为了提高跳出局部最优的能力,可以使用莱维飞行策略进行位置更新使得这部分鹈鹕个体去到更广的搜索空间:
在这里插入图片描述

3. 部分代码展示

%%
clc
clear
close all%%
Fun_name='F1'; % number of test functions: 'F1' to 'F23'
SearchAgents=30;                     % number of Pelicans (population members) 
Max_iterations=500;                  % maximum number of iteration
[lb,ub,dim,fobj]=Get_Functions_details(Fun_name); % Object function information
[Best_score_POA,Best_pos_POA,POA_curve]=POA(SearchAgents,Max_iterations,lb,ub,dim,fobj);   
[Best_score_SSA,Best_pos_SSA,SSA_curve]=SSA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_WOA,Best_pos_WOA,WOA_curve]=WOA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_GWO,Best_pos_GWO,GWO_curve]=GWO(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_IPOA,Best_pos_IPOA,IPOA_curve]=IPOA(SearchAgents,Max_iterations,lb,ub,dim,fobj);%%
figure('Position',[454   445   694   297]);
subplot(1,2,1);
func_plot(Fun_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Fun_name,'( x_1 , x_2 )'])subplot(1,2,2);
t = 1:Max_iterations;
semilogy(t, POA_curve, 'b-',    t, SSA_curve, 'k-',    t, WOA_curve, 'g-',  t, GWO_curve, 'm-',  t, IPOA_curve, 'r-','linewidth', 1.5);title(Fun_name)
xlabel('Iteration');
ylabel('Best fitness function');
axis tight
legend('POA','SSA','WOA','GWO','IPOA')display(['The best solution obtained by POA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_POA)]);
display(['The best optimal value of the objective funciton found by POA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_POA)]);
display(['The best solution obtained by SSA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_SSA)]);
display(['The best optimal value of the objective funciton found by SSA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_SSA)]);
display(['The best solution obtained by WOA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_WOA)]);
display(['The best optimal value of the objective funciton found by WOA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_WOA)]);
display(['The best solution obtained by GWO for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_GWO)]);
display(['The best optimal value of the objective funciton found by GWO  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_GWO)]);
display(['The best solution obtained by IPOA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_IPOA)]);
display(['The best optimal value of the objective funciton found by IPOA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_IPOA)]);

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取

可以获取完整代码资源。

http://www.lryc.cn/news/156806.html

相关文章:

  • C++初阶:C++入门
  • golang操作数据库--gorm框架、redis
  • 10 种常用的字符串方法
  • CSDN每日一练 |『生命进化书』『订班服』『c++难题-大数加法』2023-09-06
  • echarts饼图label自定义样式
  • Unity汉化一个插件 制作插件汉化工具
  • 从过滤器初识责任链设计模式
  • Redis7安装配置
  • 切分支解决切不走因为未合并的路径如何解决
  • 自动化运维:Ansible之playbook基于ROLES部署LNMP平台
  • SpringBoot整合MQ
  • 算法训练day37|贪心算法 part06(LeetCode738.单调递增的数字)
  • 【C++基础】4. 变量
  • jmeter setUp Thread Group
  • 图神经网络教程之GCN(pyG)
  • python中的逻辑运算
  • TortoiseGit设置作者信息和用户名、密码存储
  • Fragment.OnPause的事情
  • 【C++基础】5. 变量作用域
  • Python列表排序
  • (云HIS)云医院管理系统源码 SaaS模式 B/S架构 基于云计算技术
  • sql:SQL优化知识点记录(十一)
  • leetcode-链表类题目
  • 数据结构——哈希
  • 效果好的it监控系统特点
  • leetcode1288. 删除被覆盖区间(java)
  • Python 虚拟环境相关命令
  • 使用U盘同步WSL2中的git项目
  • Stable Diffuse AI 绘画 之 ControlNet 插件及其对应模型的下载安装
  • CMAK学习