当前位置: 首页 > news >正文

2023-02-20干活小计:

所以我今天的活开始了:

In this paper, the authors target the problem of Multimodal Name Entity Recognition(MNER) as an improvement on NER(text only)

The paper proposes a multimodal fusion based on a heterogeneous graph of texts and images to make the representaion more consisten and to get a better representation of texts and images.the paper first constructs the heterogeneous graph with dynamic links between textual and visual nodes. Therefore the model could get the delicate regions in the images to cast light on the entities in the texts.On the heterogeneous and dynamic graph, the paper designs a simple and novel contrastive learning strategy to classify the graph as the auxiliary task. The strategy could also alleviate the negative effects of images.

Strong Points:
1.The main problems of MNRE are clearly pointed out such as introducing negative effects of images ,in the meanwhile the model is contrapuntally designed and works as the experiment show.
2.The proposed approach is pretty novel such as the two-stream graph transformer ,  the heterogeneous graph with dynamic links between textual and visual nodes and so on.
3.Overall, this paper is clearly written and well organized.
4.Well-rounded related work, and sufficient baseline methods to be compared.


Weak Points:
1.The part of Auxiliary Contrastive Learning can be expanded so that the readers can understand the Ablations better.
2.The part of Tagging could be more breif or be more elaborated if necessery.
3.In Abstract and Introduction the modalities voices are mentioned but they are not mentioned later.The author could talk about the future word as well as some difficulties encountered in the modalities voices.

Details:
1.The case of "Martin Garrix" could be used to explain the part of Two-Stream Mechanism so that the reader could understand better.
2.The authors can introduce the future work.The paper do not introduce the effect of other modalities such as voices , videos.
3.Some figures of cases can be showed in the part of  Auxiliary Contrastive Learning and the part of detailed analysis .Figures of cases should not only appear in the part of case studies.

一上午加下午就整这个去了,晚上还要去和老板吃饭。= =

回家看了一下深度学习的花书
.

http://www.lryc.cn/news/15513.html

相关文章:

  • LeetCode_动态规划_困难_1326.灌溉花园的最少水龙头数目
  • mac tcpdump学习
  • 【跟我一起读《视觉惯性SLAM理论与源码解析》】第二章 编程及编译工具
  • 广东望京卡牌科技有限公司,2023年团建活动圆满举行
  • ts语法如何在Vue3中运用?
  • RK3566添加湿度传感器以及浅析hal层
  • 看了这份Java高级笔试宝典覆盖近3年Java笔试中98%高频知识点,反打面试官
  • 从0到1搭建大数据平台之监控
  • 采购评标管理过程是怎样的?有哪些评标标准?
  • 《Vue+Spring Boot前后端分离开发实战》专著累计发行上万册
  • 类与类之间的关系有哪几种?
  • LeetCode 606.根据二叉树创建字符串,102.二叉树的层序遍历和牛客 二叉搜索树与双向链表
  • 02-18 周六 图解机器学习之SMV 第五章5-2
  • Spring Boot系列--创建第一个Spring Boot项目
  • 手把手教你用React Hook和TypeScript从零实现虚拟滚动列表组件
  • 界面控件DevExpress WPF Pivot Grid——拥有强大多维数据分析能力!
  • python字典及基础操作
  • Windows Server 2008 R2安装onlyoffice【docker】
  • JVM学习笔记六:运行时数据区之堆
  • usb闪存驱动器数据恢复该怎么进行?3个方法总结
  • DAX 微信 markdown 编辑器
  • 湖南中创教育为学员提供方便快速的退费服务
  • Java 给视频添加背景音乐 | Java工具
  • 【JUC2022】第二章 多线程锁
  • 快学会这个技能-.NET API拦截技法
  • stm32f407探索者开发板(十八)——串口通信实验讲解(USART_RX_STA流程图详解)
  • Hystrix资源隔离
  • 字符串(一)-- LeetCode[3] 无重复字符的最长子串
  • Qt中修改界面类的类名时需要注意的几个修改点
  • 【Spring6】| Spring启示录、Spring概述