当前位置: 首页 > news >正文

onnx 模型切割掉conv后面的节点,设置输出层名称和最后节点名称一致,设置输出层shape和输出节点一致.

某些模型最后卷积层之后的算子不适合在推理引擎里面跑,切割掉conv后面的算子,在cpu上实现有比较好的性能.
包含:
1.获取onnx中间节点的shape的示例
2.增加onnx模型输出,设置名称,type, shape. 示例
3.编辑onnx模型示例切割掉绿色部分示例
import onnx
import sys
import json
from onnx import shape_inference, TensorProtoif len(sys.argv) < 2:print('Usage: ' + sys.argv[0] + '<onnx_filename>')exit(-1)onnx_file = sys.argv[1]# 加载ONNX模型
model = onnx.load(onnx_file)graph = model.graphoutputs = model.graph.output 
if(len(outputs)!=3):print("This isn't ScoreBoxKpt model!")quit()output_list=["output0","output1","output2"]for output in outputs:if output.name in score_box_kpt :print(f"output name: {output.name}")else:print("This isn't a fit model!")quit()def getConvList(endName):stack=[]stack.append(endName)convList=[]while(len(stack)):name=stack.pop()for node in graph.node:if name in node.output :if node.op_type=="Conv":if node.name not in convList :convList.append(node.name)else: for input in node.input:if input not in stack:stack.insert(0, input)return convListConv0=getConvList(output_list[0])
Conv1=getConvList(output_list[1])
Conv2=getConvList(output_list[2])def save2json(save_dict, name):if len(save_dict) == 0:print("this is nothing to save json")return Nonewith open(name, 'w') as fp:#{'a': 'Runoob', 'b': 7}json.dump(save_dict, fp, sort_keys=False, indent=4, separators=(',', ': ')) #default=strsave_dict = {output_list[0]:scoreConv,output_list[1]:boxConv,output_list[2]:kptConv}conv_list=Conv0+Conv1+Conv2#获取onnx中间节点的shape.
output_dim_dic={}
inferred_onnx_model = shape_inference.infer_shapes(model)
inferred_graph = inferred_onnx_model.graph
inferred_value_info = inferred_graph.value_info
for node in graph.node:if node.name in conv_list:for value_info in inferred_value_info:if value_info.name==node.output[0]:output_dim_dic[node.name]=value_info.type.tensor_type;#删除conv 后面的onnx节点
# Find target node index
for name in conv_list:target_node = Nonefor node in graph.node:if node.name == name:target_node=nodebreakoutput_names = []for output in target_node.output:output_names.append(output)set1=set(output_names)del_node = []have_new_del_node = Falsewhile True:have_new_del_node = Falsefor node in graph.node:if node.name in del_node:continueset2=set(node.input)if set1.intersection(set2): output_names+=node.output         set1=set(output_names)del_node.append(node.name)have_new_del_node = Trueif have_new_del_node == False:breakfor node in graph.node:if node.name in del_node:print(f"1remove node {node.name}")model.graph.node.remove(node)have_new_del_node = False
while True:have_new_del_node = Falsefor node1 in graph.node:if node1.name in conv_list :continueset1=set(node1.output)to_delete =Truefor node2 in graph.node:set2=set(node2.input)if set1.intersection(set2): to_delete = Falsebreakif to_delete == True:print(f"2remove node {node1.name}")model.graph.node.remove(node1)have_new_del_node=Trueif have_new_del_node == False :breaksave_output_name=[]
for node in graph.node:if node.name in conv_list:#增加输出层output_info = onnx.helper.ValueInfoProto()node.output[0]=node.nameoutput_info.name = node.output[0]for dim_value in output_dim_dic[node.name].shape.dim:output_info.type.tensor_type.shape.dim.extend([dim_value])output_info.type.tensor_type.elem_type = TensorProto.FLOATprint(output_info)graph.output.extend([output_info])save_output_name.append(node.output[0])outputs = model.graph.output 
# 打印输出节点名称
for output in outputs:if output.name  in save_output_name :continuemodel.graph.output.remove(output)
outputs = model.graph.output 
# 打印输出节点名称
for output in outputs:if output.name  in save_output_name :continuemodel.graph.output.remove(output)
# Save modified ONNX model
onnx.checker.check_model(model)
onnx.save(model, "backbone.onnx")
save2json(save_dict, 'conv_param.json'
http://www.lryc.cn/news/155104.html

相关文章:

  • 泛型的学习
  • L1-061 新胖子公式(Python实现) 测试点全过
  • 潜艇来袭(Qt官方案例-2维动画游戏)
  • 50ETF期权开户平台(0门槛期权开户指南)
  • leaflet · 关于轨迹移动
  • 学生宿舍水电费自动缴费系统/基于javaweb的水电缴费系统
  • 机器人中的数值优化(十三)——QP二次规划
  • 语言深入理解指针(非常详细)(三)
  • 实训笔记8.31
  • el-table 垂直表头
  • B081-Lucene+ElasticSearch
  • 机器学习:塑造未来的核心力量
  • RK3568-i2c-适配8010rtc时钟芯片
  • Spring Security - 基于内存快速demo
  • 6 | 从文本文件中读取单词并输出不重复的单词列表
  • 【微信小程序篇】- 多环境(版本)配置
  • ssh配置(一、GitLabGitHub)
  • 开了抖店后就可以直播带货了吗?想在抖音带货的,建议认真看完!
  • 【深度学习实验】数据可视化
  • 【Golang】函数篇
  • 在ubuntu上安装ns2和nam(ubuntu16.04)
  • SpringCloudAlibaba之Sentinel介绍
  • 苹果微信聊天记录删除了怎么恢复?果粉原来是这样恢复的
  • JVM的故事——虚拟机字节码执行引擎
  • 设计模式之适配器与装饰器
  • 服务器数据恢复- Ext4文件系统分区挂载报错的数据恢复案例
  • 19-springcloud(上)
  • 前端基础---HTML笔记汇总一
  • 智汇云舟亮相中国安防工程商集成商大会
  • 使用 Sealos 在离线环境中光速安装 K8s 集群