当前位置: 首页 > news >正文

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II

文章目录

  • 前言
  • 一、62.不同路径
  • 二、63.不同路径II
  • 总结

前言

动态规划


一、62.不同路径

  • 深搜
  • 动态规划
  • 数论

深搜:

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

62.不同路径

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:int dfs(int i, int j, int m, int n) {if (i > m || j > n) return 0; // 越界了if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);}
public:int uniquePaths(int m, int n) {return dfs(1, 1, m, n);}
};

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。


动态规划:

  1. 定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

62.不同路径1

代码:

class Solution {public int uniquePaths(int m, int n) {int dp[][] = new int[m][n];for(int i = 0;i<m;i++){dp[i][0] = 1;}for(int j = 0;j<n;j++){dp[0][j] = 1;}for(int i = 1;i<m;i++){for(int j = 1;j<n;j++){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
}


数论:

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 分子int denominator = m - 1; // 分母int count = m - 1;int t = m + n - 2;while (count--) {numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {numerator /= denominator;denominator--;}}return numerator;}
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

计算组合问题的代码还是有难度的,特别是处理溢出的情况!

二、63.不同路径II

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
  1. dp数组如何初始化

在62.不同路径

(opens new window)不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}
}
  1. 举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m = obstacleGrid.length;int n = obstacleGrid[0].length;int dp[][] = new int[m][n];if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1){return 0;}for(int i = 0;i<m && obstacleGrid[i][0] ==0;i++){dp[i][0] = 1;}for(int i = 0;i<n && obstacleGrid[0][i] ==0;i++){dp[0][i] = 1;}for(int i = 1;i<m;i++){for(int j =1;j<n;j++){if(obstacleGrid[i][j] ==0){dp[i][j] = dp[i-1][j] + dp[i][j-1];}else{dp[i][j] = 0;}}}return dp[m-1][n-1];}
}


总结

今天去看《奥本海默》。

http://www.lryc.cn/news/152753.html

相关文章:

  • 《网站建设:从规划到发布的全过程详解》
  • 1分钟实现 CLIP + Annoy + Gradio 文搜图+图搜图 系统
  • 用树形dp+状压维护树上操作的计数问题:0902T3
  • 【python爬虫】批量识别pdf中的英文,自动翻译成中文上
  • Android笔记--Hilt
  • Oracle常用权限处理
  • Stable Diffuse 之 本地环境部署 WebUI 进行汉化操作
  • r 安装源码包 安装本地r包
  • webservice调用对接第三方系统
  • 实现不同局域网文件共享的解决方案:使用Python自带HTTP服务和端口映射
  • [Android 四大组件] --- Activity
  • shell中for循环输出1-6
  • docker 04.更加重要的命令
  • 【理解线性代数】(二)线性运算和线性空间
  • 专业的视觉特效处理包,FxFactory 8 Pro for Mac助您打造精彩视频
  • Darshan日志分析
  • python中如何不修改字符串的前提,使其对大小写字母不敏感
  • 聊聊Http服务化改造实践
  • docker打包部署
  • 解密Spring MVC异常处理:从局部到全局,打造稳固系统的关键步骤
  • Three.js添加阴影和简单后期处理
  • git submodule 子模块的基本使用
  • 四层负载均衡的NAT模型与DR模型推导 | 京东物流技术团队
  • 【vue】vue前端实现随机验证码(数字、字母混合)功能
  • 使用Visual Studio 2022实现透明按钮和标签、POPUP样式窗体的一种工业系统的UI例程
  • 【爬虫】7.1. JavaScript动态渲染界面爬取-Selenium
  • 菜鸟教程《Python 3 教程》笔记(12):推导式
  • MAC修改python3命令为py
  • Windows下Git Bash调用rsync
  • springboot自定义事件发布及监听