当前位置: 首页 > news >正文

SpringBoot项目通过分词器生成词云

目录

  • 前言
  • 一、词云是什么?
  • 二、使用步骤
    • 1.引入依赖
    • 2.application.yml
    • 3.Controller
    • 4.分词工具类
    • 4.词云生成工具类、支持输出文件和字节流
  • 注意


前言

公司项目涉及到员工任务管理,需要从员工任务中获取任务信息生成个人词云图,可以把员工任务中较为高频的词语突出展示。


一、词云是什么?

词云就是对文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层” 或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨。

在这里插入图片描述

二、使用步骤

1.引入依赖

<!--   IK分词器    -->
<dependency><groupId>cn.shenyanchao.ik-analyzer</groupId><artifactId>ik-analyzer</artifactId><version>9.0.0</version>
</dependency><!--    詞雲    -->
<dependency><groupId>com.kennycason</groupId><artifactId>kumo-core</artifactId><version>1.28</version>
</dependency><dependency><groupId>com.kennycason</groupId><artifactId>kumo-tokenizers</artifactId><version>1.28</version>
</dependency><!--    web    -->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>
</dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional>
</dependency>

2.application.yml

server:port: 8088# 关闭日志输出 (可选)
logging:level:com.kennycason.kumo.WordCloud: OFF

3.Controller

import com.chendi.mydemo.utils.IkAnalyzerUtils;
import com.chendi.mydemo.utils.WorkCloudUtil;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;import java.util.ArrayList;
import java.util.List;
import java.util.Map;@RestController
public class TestController {@GetMapping("/")public void test() {List<String> list = new ArrayList<>();list.add("爱购物,爱手机,爱电脑,爱上网");list.add("爱学习,爱游戏,爱吃饭,爱睡觉");list.add("爱上班,爱下班,爱加班,爱翘班");list.add("爱上班,爱下班,爱加班,爱翘班");list.add("夏天的阳光明媚灿烂,\n" +"大自然万物生机盎然。\n" +"清晨的微风吹过花丛,\n" +"点缀着青草和蓝天。\n" +"\n" +"蝴蝶翩翩起舞在花间,\n" +"蜜蜂忙碌采集甘甜。\n" +"鸟儿欢快地歌唱着,\n" +"为夏日带来欢欣和欢愉。\n" +"\n" +"海浪轻拍沙滩起伏,\n" +"沙粒细腻温热宜走。\n" +"阳光透过水面璀璨,\n" +"让海洋如银河般流动。\n" +"\n" +"夏日的夜晚星空闪耀,\n" +"月亮洒下银色光晕。\n" +"夏虫的音符演奏着,\n" +"营造出夏夜的美妙。\n" +"\n" +"夏天啊,你是如此迷人,\n" +"给人们带来快乐和欢欣。\n" +"在你的怀抱里,我们尽情享受,\n" +"夏天,你是美丽的季节!");Map<String, Integer> wordMap = IkAnalyzerUtils.wordCloud(list, 0);WorkCloudUtil.generateWriteImage(wordMap);}}

4.分词工具类

import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;import java.io.IOException;
import java.io.StringReader;
import java.util.*;/*** 解析工具类*/
public class IkAnalyzerUtils {/*** 拆分词云** @param list     需要拆分的词云集合* @param quantity 结果集取的数量*/public static String wordCloudParsing(List<String> list, Integer quantity) {Map<String,Integer> result = wordCloud(list,quantity);StringBuilder str = new StringBuilder();result.forEach((k, v) -> {String value = " " + k;str.append(value);});return str.toString().trim();}/*** 拆分词云** @param list     需要拆分的词云集合* @param quantity 结果集取的数量*/public static List<Map<String,Object>> wordCloudList(List<String> list, Integer quantity) {Map<String,Integer> result = wordCloud(list,quantity);List<Map<String,Object>> mapList = new LinkedList<>();result.forEach((k, v) -> {Map<String,Object> map = new HashMap<>(16);map.put("name",k);map.put("value",v);mapList.add(map);});Collections.reverse(mapList);return mapList;}/*** 拆分词云** @param list     需要拆分的词云集合* @param quantity 结果集取的数量*/public static Map<String,Integer> wordCloud(List<String> list, Integer quantity) {StringReader reader = new StringReader(String.join(",", list));IKSegmenter ikSegmenter = new IKSegmenter(reader, true);Map<String, Integer> map = null;try {Lexeme lexeme;map = new HashMap<>(16);while ((lexeme = ikSegmenter.next()) != null) {String str = lexeme.getLexemeText();Integer num = map.get(str);if (num != null && num > 0) {map.put(str, num + 1);} else {map.put(str, 1);}}reader.close();} catch (IOException e) {e.printStackTrace();}Map<String, Integer> result = new LinkedHashMap<>();if (quantity != null && quantity > 0) {map.entrySet().stream().sorted(Map.Entry.comparingByValue()).limit(quantity).forEachOrdered(item -> result.put(item.getKey(), item.getValue()));} else {map.entrySet().stream().sorted(Map.Entry.comparingByValue()).forEachOrdered(item -> result.put(item.getKey(), item.getValue()));}return result;}
}

4.词云生成工具类、支持输出文件和字节流

import com.kennycason.kumo.CollisionMode;
import com.kennycason.kumo.WordCloud;
import com.kennycason.kumo.WordFrequency;
import com.kennycason.kumo.bg.CircleBackground;
import com.kennycason.kumo.font.KumoFont;
import com.kennycason.kumo.font.scale.SqrtFontScalar;
import com.kennycason.kumo.nlp.FrequencyAnalyzer;
import com.kennycason.kumo.nlp.tokenizers.ChineseWordTokenizer;
import com.kennycason.kumo.palette.ColorPalette;
import lombok.SneakyThrows;import java.awt.*;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;public class WorkCloudUtil {@SneakyThrowspublic static InputStream generateImageStream(Map<String, Integer> wordMap) {WordCloud wordCloud = generateWordCloud(wordMap);//输出字节流ByteArrayOutputStream out =new ByteArrayOutputStream();wordCloud.writeToStreamAsPNG(out);return new ByteArrayInputStream(out.toByteArray());}@SneakyThrowspublic static void generateWriteImage(Map<String, Integer> wordMap) {WordCloud wordCloud = generateWordCloud(wordMap);wordCloud.writeToFile("D:\\chendi\\cd.png");}public static WordCloud generateWordCloud(Map<String, Integer> wordMap){if (wordMap == null || wordMap.size() == 0) {return null;}final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();frequencyAnalyzer.setWordFrequenciesToReturn(600);frequencyAnalyzer.setMinWordLength(2);frequencyAnalyzer.setWordTokenizer(new ChineseWordTokenizer());final List<WordFrequency> wordFrequencies = new ArrayList<>();for (Map.Entry<String, Integer> entry : wordMap.entrySet()) {wordFrequencies.add(new WordFrequency(entry.getKey(), entry.getValue()));}Font font = FontUtil.getFont("/static/fonts/QingNiaoHuaGuangJianMeiHei-2.ttf");//设置图片分辨率final Dimension dimension = new Dimension(400, 400);//此处的设置采用内置常量即可,生成词云对象final WordCloud wordCloud = new WordCloud(dimension, CollisionMode.PIXEL_PERFECT);//设置边界及字体wordCloud.setPadding(2);wordCloud.setBackgroundColor(Color.WHITE);//设置背景图层为圆形,设置圆形的大小wordCloud.setBackground(new CircleBackground(200));//设置词云显示的三种颜色,越靠前设置表示词频越高的词语的颜色wordCloud.setColorPalette(new ColorPalette(new Color(0x4055F1), new Color(0x408DF1), new Color(0x40AAF1), new Color(0x40C5F1), new Color(0x40D3F1), new Color(0xFFFFFF)));//设置字体的大小wordCloud.setFontScalar(new SqrtFontScalar(10, 40));wordCloud.setKumoFont(new KumoFont(font));wordCloud.build(wordFrequencies);//设置背景图片,如果想要固定的形状,就插入这个形状的图片//wordCloud.setBackground(new PixelBoundryBackground("E:\\星星/star.jpg"));return wordCloud;}}

注意

处理中文需要宿主机有中文字体包、如果宿主机不支持中文,请下载一个中文字体包

本文指定使用的就是QingNiaoHuaGuangJianMeiHei-2.ttf字体

百度一下、找不到私信我发你QingNiaoHuaGuangJianMeiHei-2.ttf字体包

http://www.lryc.cn/news/152439.html

相关文章:

  • Nacos 配置管理及相关使用
  • 重发布与路由策略
  • 57. 插入区间(C++题解)
  • 【数据结构Java版】 初识泛型和包装类
  • Spring中如何解决循环依赖问题的三种方法
  • 【ArcGIS Pro二次开发】(65):进出平衡SHP转TXT、TXT转SHP
  • Shell开发实践:服务器的磁盘、CPU、内存的占用监控
  • 超详细 async和await 项目实战运用(附加文字解答+源码)
  • Maven入门教程(三):Maven语法
  • C++技术点,故事解析
  • 数据结构(Java实现)-字符串常量池与通配符
  • python强化学习--gym安装与使用
  • 105. 从前序与中序遍历序列构造二叉树
  • (第六天)初识Spring框架-SSM框架的学习与应用(Spring + Spring MVC + MyBatis)-Java EE企业级应用开发学习记录
  • 如何使用『Nginx』配置后端『HTTPS』协议访问
  • Git仓库简介
  • TensorRTC++ | INT8量化
  • VS + qt环境使用QCustomPlot等三方库如何配置
  • OS 段页结合的实际内存管理
  • 一种改进多旋翼无人机动态仿真的模块化仿真环境研究(Matlab代码实现)
  • 02-请解释一下Java的内存模型和happens-before规则?【Java面试题总结】
  • PVE 8 出现CPU 100% 冻结(卡死)
  • 【高效编程技巧】编程菜鸟和编程大佬的差距究竟在哪里?
  • 继承【C++】
  • ORB-SLAM3复现过程中遇到的问题及解决办法
  • vue开发桌面exe应用
  • C# 实现PictureBox从随机选择的文件夹内对图像进行随机播放
  • 腾讯云国际代充-GPU服务器安装驱动教程NVIDIA Tesla
  • 【python爬虫】9.带着小饼干登录(cookies)
  • 原神剑冢三层封印怎么解开 原神剑冢三层封印在哪里打