当前位置: 首页 > news >正文

手撕红黑树

学了很久编程了,红黑树在我们耳边早就如雷贯耳,都说他是数据结构中最难的几种结构了,但是,实际上学会了之后,你会发现他还是很简单的,个人认为他还没有AVL树的旋转难,好了,老规矩,来上代码:

#pragma once
#pragma once
#include <iostream>
#include <set>
#include <map>
#include <assert.h>
#include <math.h>
#include <vector>
using namespace std;
namespace cc
{enum colour{RED,BLACK};template<class K, class V>struct RBtreenode{colour _col;pair<K, V> _val;RBtreenode<K, V>* _left;RBtreenode<K, V>* _right;RBtreenode<K, V>* _parent;RBtreenode(const pair<K, V>& x):_val(x), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}};template<class K, class V>class RBtree{public:typedef RBtreenode<K, V> node;void reor(node* parent){node* sub = parent->_left;node* subr = sub->_right;if (_root == parent){_root = sub;sub->_parent = nullptr;sub->_right = parent;parent->_parent = sub;parent->_left = subr;if (subr)subr->_parent = parent;}else{node* pparent = parent->_parent;if (pparent->_left == parent)pparent->_left = sub;elsepparent->_right = sub;sub->_parent = pparent;sub->_right = parent;parent->_parent = sub;parent->_left = subr;if (subr)subr->_parent = parent;}}void reol(node* parent){node* sub = parent->_right;node* subl = sub->_left;if (_root == parent){_root = sub;sub->_parent = nullptr;sub->_left = parent;parent->_parent = sub;parent->_right = subl;if (subl)subl->_parent = parent;}else{node* pparent = parent->_parent;if (pparent->_left = parent)pparent->_left = sub;elsepparent->_right = sub;sub->_parent = pparent;sub->_left = parent;parent->_parent = sub;parent->_right = subl;if (subl)subl->_parent = parent;}}bool insert(const pair<K, V>& x){if (_root == nullptr){_root = new node(x);_root->_col = BLACK;return true;}node* parent = nullptr;node* cur = _root;while (cur){if (x.first < cur->_val.first){parent = cur;cur = cur->_left;}else if (x.first > cur->_val.first){parent = cur;cur = cur->_right;}elsereturn false;}cur = new node(x);if (parent->_val.first > x.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;node* grandfather = parent->_parent;while (parent && parent->_col == RED){if (grandfather->_left == parent){node* uncle = grandfather->_right;//情况一:只染色if (uncle && uncle->_col == RED){uncle->_col = BLACK;parent->_col = BLACK;grandfather->_col = RED;if (grandfather == _root){grandfather->_col = BLACK;break;}}//情况二+三:旋转+染色else if (uncle && uncle->_col == BLACK){if (parent->_left == cur){//单旋reor(grandfather);//染色grandfather->_col = RED;parent->_col = BLACK;}else{//双旋reol(parent);reor(grandfather);//染色cur->_col = BLACK;//爷爷节点变红grandfather->_col = RED;}break;}else if (uncle == nullptr){if (parent->_left == cur){reor(grandfather);grandfather->_col = RED;parent->_col = BLACK;}else{reol(parent);reor(grandfather);grandfather->_col = RED;cur->_col = BLACK;}break;}}else{node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){uncle->_col = BLACK;parent->_col = BLACK;grandfather->_col = RED;if (_root == grandfather){grandfather->_col = BLACK;break;}}else if (uncle && uncle->_col == BLACK){if (parent->_left == cur){reor(parent);reol(grandfather);grandfather->_col = RED;cur->_col = BLACK;}else{reol(grandfather);grandfather->_col = RED;parent->_col = BLACK;}break;}else if (uncle == nullptr){if (parent->_left = cur){reor(parent);reol(grandfather);cur->_col = BLACK;grandfather->_col = RED;}else{reol(grandfather);parent->_col = BLACK;grandfather->_col = RED;}break;}}cur = grandfather;parent = cur->_parent;grandfather = parent->_parent;}return true;}bool check(){return _check(_root);}void print(){prin(_root);}void prin(node* root,int num){if (root == nullptr)return;if (root->_col == BLACK)num++;if (root->_left == root->_right &&root->_left == nullptr)cout << num << endl;prin(root->_left,num);prin(root->_right,num);}bool _check(node* root){if (root == nullptr){if (root->_col != BLACK)exit(-1);return true;}if (root->_parent && root->_parent->_col == RED){cout << "异常退出" << endl;exit(-1);}int num = 0;prin(root, num);}private:node* _root = nullptr;};
}

其实和AVL树的代码差不多,唯一不同的是,我们没有平衡因子了,但是有颜色。

下面来说说红黑树的规则:

1.一个节点不是红色就是黑色

2.根节点必须是黑色

3.红色节点的两个孩子必须是黑色节点

4.每条路径的黑色节点个数相同

5.叶子结点(NIL节点)是黑色的

上面就是红黑树的规则,红黑树的代码就在上面,现在说一下红黑树的具体实现规则:

1.如果叔叔节点存在且叔叔节点为红色,那么,把父节点和叔叔节点染成黑色,组父节点染成红色,如果此时的祖父节点是根节点,那么,就在把祖父节点染成黑色。如果不是,就把新插入的节点更新成祖父节点,依次往上更新,直到父节点为空或是父节点的颜色为黑色就停止。

2.如果叔叔节点存在,且叔叔节点是黑色的,那么此时就要判断新插入的节点在父节点的左还右,如果父节点,祖父节点,新插入的节点成一条线,那么此时就是单旋,然后旋转完成之后把父节点染成黑色,祖父节点染成红色。

3.如果叔叔节点存在,且为黑色,新插入节点与父节点,祖父节点形成折线,那么此时应该是双旋,旋转完成之后,把新插入的节点染成黑色,祖父节点染成红色。

4.如果叔叔节点不存在,那就看是上面的额那种情况,是那种旋转,找到对应的旋转就好了。

以上就是实现红黑树代码的具体细节。

AVL树和红黑树的对比:

其实AVL树和红黑树两个各有各的好处,是的,个人认为两个各有各的好处,因为AVL对树高比较严格,所以导致旋转点额次数就多,所以就会有额外的消耗,但是红黑树就没有这么多的消耗了,因为红黑树的上面几个规则,导致红黑树最长路径不得超过对短路径的两倍,所以,红黑树也会旋转,但是插入同等节点的条件下,红黑树旋转点次数肯定比AVL树少,但是AVL树是严格的logn,而红黑树是不太严格的logn,所以我说是各有各的好。

以上就是红黑树的规则讲解以及代码实现。希望大家能够多多支持!!谢谢!

http://www.lryc.cn/news/152392.html

相关文章:

  • 举例说明自然语言处理(NLP)技术
  • 淘宝详情API接口在各种应用中的作用性
  • java用正则方法验证文件名是否合法
  • 【learnopengl】Assimp构建与编译
  • 小兔鲜商02
  • 一键替换工程文件和场景中的UI对象字体
  • 微信小程序编辑器代码格式缩进设置
  • Android Aidl跨进程通讯(二)--异常捕获处理
  • Android中OkHttp源码阅读二(责任链模式)
  • 2023年03月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试
  • 顺序表链表OJ题(1)——【LeetCode】
  • flex:1
  • iOS练手项目知识点汇总
  • 【Linux】Libevent相关小知识总结
  • 【Spring Security】UserDetailsService 接口介绍
  • Mybatis学习|日志工厂、分页
  • Vivado 添加FPGA开发板的Boards file的添加
  • vmstat
  • LinuxShell变量
  • 如何实现的手机实景自动直播,都有哪些功能呢?
  • 如何让qt tableView每个item中个别字用不同颜色显示?
  • Aspose导出word使用记录
  • [Java]_[初级]_[使用SAX流的方式写入XML文件]
  • java里面封装https请求工具类
  • uniApp常见面试题-附详细答案
  • Java“牵手”1688整店商品API接口数据,通过店铺ID获取整店商品详情数据,1688店铺所有商品API申请指南
  • 数据进制的转换
  • 如何分析识别文章/内容中高频词和关键词?
  • Windows7安装SSH客户端的解决方案
  • 力扣:81. 搜索旋转排序数组 II(Python3)