当前位置: 首页 > news >正文

【数据结构】多叉树转换为二叉树-c++代码实现-POJ 3437 Tree Grafting

文章目录

  • 写这个题目的原因
  • 寻找提交网址
  • 题目解决思路
  • AC代码
  • 成功AC

写这个题目的原因

1、今天在看王道考研数据结构的课(虽然我要保研,但是因为这些看保研面试的时候会问,所以看一下嘞orz),看到了这个多叉树转换为二叉树的知识点。
2、上学期上编译原理课的时候老师上课也提问过这个问题,所以今天尝试着用c++的代码实现一下。

寻找提交网址

1、POJ不知道为什么,提交任何代码都一直报错
(目前时间为2023年8月30日)
然后我去了洛谷、AcWing、LeetCode、PTA都没有搜到这个题目。。。
2、无奈之下去了VJudge,最终在一个韩国的OJ上提交了这个题目,并成功AC,中间的过程也算是一波三折。
这里附上提交的网址:
Tree Grafting(韩国的OJ)
Tree Grafting(POJ)

题目解决思路

题目输入有多行,每行代表一个建树的过程,由d或者u组成。d表示往下新建节点,u表示往上走到当前节点的父亲,这样走下来就得到了一个多叉树。
最终让求解:
1、多叉树的深度,即dep1
2、转换后的二叉树的深度,即dpe2

对于dep1,通过观察输入的字符串可以发现,每一个d即为往下新建一个节点,这里我们可以使用“前缀和”的思想,新建一个变量t,初始值为0,遇到d加一,遇到u减一,在这个过程中最大的t即为要求解的dep1

比如对于题目给出的第一个输入,初始t=0
dudduduudu, 对应的t为
1012121010,所以多叉树的深度为2,即为求解的第一个变量

对于dep2的求解,我们可以对所有的节点设置唯一的一个变量标记(用int就可以实现),然后进行反向建边,用一个一维的数组就可以存储所有的二叉树

当然看到这里有人可能会问,为什么不正向建边?
答:因为这是一个多叉树,一个节点可能有多个儿子,题目的最多节点为10000,那么如果正向建边的话,至少得10000^2大小的数组,可能会爆内存!

这样反向建边之后,我们相当于已经存储了每一个节点的父亲,那么接下来就是很常见的多叉树转换为二叉树的思路了
我们依次遍历所有节点,对于当前节点,如果

1、如果它父亲的左子为空:
那么直接把当前节点作为它父亲的左子
2、如果它父亲的左子不为空:
那么找它父亲左子的最右边的儿子(在这里我们定义为temp),把当前节点作为temp的右子

上面这个点如果不明白,可以百度搜索一下【多叉树怎么转换为二叉树?】会有比较详细的解释

更多细节和注释见代码

AC代码

#include <stdio.h>
#include <cstring>
#include <iostream>
using namespace std;
#define ll long long
#define sf(x) scanf("%d", &x);
#define de(x) cout << x << " ";
#define Pu puts("");
const int N = 2e4 + 9;  // 注意这里,题目中说节点最多为1e4,但是字符串长度最多为2e4
int n, m, ans;
int dep1, dep2;  // 求解的变量
char s[N];       // 输入的字符串
int fa[N];       // 记录每个节点的父亲
struct E {int dep;  // 存储二叉树的数据结构int l, r;
} e[N];
int main() {int now;    // 代表当前所处的节点位置int count;  // 代表当前新建的节点标号int depTmp;  // 统计多叉树的深度int T = 0;while (scanf("%s", s)) {if (s[0] == '#')break;T++;n = strlen(s);for (int i = 0; i < n + 1; i++) {fa[i] = -1;  // 所有点标记为没有父亲e[i].l = e[i].r = -1;}now = 0;    // 代表当前所处的位置count = 0;  // 代表当前新建的节点标号depTmp = dep1 = 0;for (int i = 0; i < n; i++) {if (s[i] == 'd') {count++;fa[count] = now;  // 向下,反向建边now = count;depTmp++;  // 进行深度统计if (depTmp > dep1)dep1 = depTmp;} else if (s[i] == 'u') {now = fa[now];  // 向上depTmp--;}}e[0].dep = 0;dep2 = 0;for (int i = 1; i <= count; i++) {if (e[fa[i]].l == -1) {e[fa[i]].l = i;  // 如果此时父亲节点没有左子,则当前节点作为左子e[i].dep = e[fa[i]].dep + 1;if (e[i].dep > dep2)  // 深度更新dep2 = e[i].dep;} else {  // 如果已经有了左子int k = e[fa[i]].l;while (e[k].r != -1) {k = e[k].r;  // 则找左子的最右孩子}e[k].r = i;  // 新的右孩子e[i].dep = e[k].dep + 1;if (e[i].dep > dep2)  // 深度更新dep2 = e[i].dep;}}printf("Tree %d: %d => %d\n", T, dep1, dep2);}return 0;
}

成功AC

在这里插入图片描述

http://www.lryc.cn/news/148243.html

相关文章:

  • ASP.NET Core 中基于 Controller 的 Web API
  • iOS系统修复软件 Fix My iPhone for Mac
  • Git企业开发控制理论和实操-从入门到深入(七)|企业级开发模型
  • 15. 卡牌游戏
  • vue使用打印组件print-js
  • 20230830比赛总结
  • DNS指向别名还是IP
  • 【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(1,基本概念与随机变量常见类型)
  • CSS判断手机暗黑模式
  • 【java中的Set集合】HashSet、LinkedHashSet、TreeSet(最通俗易懂版!!)
  • python中的文件操作
  • spark支持深度学习批量推理
  • 代码随想录打卡—day52—【子序列问题】— 8.31 最大子序列
  • gcc4.8.5升级到gcc4.9.2
  • Golang 中的 archive/zip 包详解(三):常用函数
  • 微服务架构七种模式
  • 关于CICD流水线的前端项目运行错误,npm项目环境配置时出现报错:Not Found - GET https://registry.npm...
  • element-plus的周选择器 一周从周一开始
  • Android 9.0 pms获取应用列表时过滤掉某些app功能实现
  • HTML <thead> 标签
  • 谷歌发布Gemini以5倍速击败GPT-4
  • 力扣92. 局部反转链表
  • 九、适配器模式
  • 使用spring自带的发布订阅来实现发布订阅
  • Walmart电商促销活动即将开始,如何做促销活动?需要注意什么?
  • Matlab(画图进阶)
  • 人生的回忆
  • Spring之依赖注入源码解析
  • 5G NR:RACH流程-- Msg1之生成PRACH Preamble
  • 高基数类别特征预处理:平均数编码 | 京东云技术团队