当前位置: 首页 > news >正文

机器学习框架sklearn之特征降维

目录

  • 特征降维
    • 概念
  • 特征选择
  • 过滤式
    • ①低方差特征过滤
    • ②相关系数
    • ③主成分分析

特征降维

0维 标量

1维 向量

2维 矩阵

概念

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

注:正是因为在进行训练的时候,我们都是使用特征进行学习,如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大

降维的两种方式:

  • 特征选择
  • 主成分分析(可以理解为一种特征提取的方式)

特征选择

①定义

数据中包含冗余或相关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

②方法

  • Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
    • 方差选择法:低方差特征过滤
    • 相关系数
  • Embedded(嵌入式):算法自动选择特征(特征与目标值之间的关联)
    • 决策树:信息熵、信息增益
    • 正则化:L1、L2
    • 深度学习:卷积等

③模块

sklearn.feature_selection

过滤式

①低方差特征过滤

  • 删除低方差的一些特征

    • 特征方差小:某个特征很多样本的值比较相近
    • 特征方差大:某个特征很多样本的值都有差别
  • API

sklearn.feature_selection.VarianceThreshold(threshold=0.0)-删除所有低方差特征
-Variance.fit_transform(X)X:numpy array格式的数据[n_samples,n_features]返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征
  • 代码演示
from sklearn.feature_selection import VarianceThreshold
import pandas as pd
def variance_demo():#1.获取数据data=pd.read_csv("data.TXT")print("data:\n", data)#2.实例化一个转换器类transfer=VarianceThreshold(threshold=7)#3.调用fit_transformresult=transfer.fit_transform(data)print("result:\n", result,result.shape)return None

②相关系数

  • 皮尔逊相关系数(Pearson Correlation Coefficient)

    • 反映变量之间相关关系密切程度的统计指标
  • 公式

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2mnqAqBm-1676026457448)(C:\Users\dawei\AppData\Roaming\Typora\typora-user-images\image-20230204224211432.png)]

  • 特点

    相关系数的值介于-1与+1之间,即-1<=r<=+1,其性质如下:

    • 当r>0时,表示两变量正相关,r<0时,两变量为负相关
    • 当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
    • 当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
    • 一般可按三级划分:|r|<0.4为低度相关;0.4<=|r|<0.7为显著性相关;0.7<=|r|<1为高度线性相关
  • API

from scipy.stats import pearsonr-x:array
-y:array
-Returns:(Pearson`s correlation coefficient,p-value)
  • 代码演示
from scipy.stats import pearsonr
def p_demo():# 1.获取数据data = pd.read_csv("data.TXT")print("data:\n", data)# 2.计算两个变量之间的相关系数r=pearsonr(data["one"],data["two"])print("相关系数:\n", r)return None

如果特征与特征之间相关性很高,通过以下方法处理:
①选取其中一个
②加权求和
③主成分分析

③主成分分析

  • 定义

    高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量

  • 作用

    是数据维数压缩,尽可能降低原数据维数(复杂度),损失少量信息

  • 应用

    回归分析或者聚类分析当中

  • API

sklearn.decomposition.PCA(n_components=None)-将数据分解为较低维数空间
-n_components:·小数:表示保留百分之多少的信息·整数:减少到多少特征
-PCA.fit_transform(X)X:numpy array格式的数据[n_samples,n_features]
-返回值:转换后指定维度的array
  • 使用
from sklearn.decomposition import PCA
def pca_demo():data=[[2,8,4,5],[6,3,0,8],[5,4,9,1]]#1.实例化一个转换器类transfer=PCA(n_components=2)#2.调用fit_transformresult=transfer.fit_transform(data)print("result:\n",result)return None
http://www.lryc.cn/news/1473.html

相关文章:

  • java实现二叉树(一文带你详细了解二叉树的)
  • 学弟学妹少走弯路,超完整算法刷题路线出炉
  • Windows截取gif动态图的软件 ScreenToGif 的安装、使用教程
  • C++程序设计——多态:虚函数、抽象类、虚函数表
  • OpenMMLab AI实战营 第6课 语义分割与MMSegmentation
  • 产业互联网是对互联网的衍生和进化,也是一次重塑和再造
  • Shell脚本之——Hadoop3单机版安装
  • 代码随想录NO39 |0-1背包问题理论基础 416.分割等和子集
  • FITC-PEG-FA,荧光素-聚乙二醇-叶酸,FA-PEG-FITC,实验室科研试剂,提供质量检测
  • 简洁易懂:源码+实战讲解Redisson并发锁及看门狗自动续期
  • TCP 三次握手和四次挥手
  • JavaWeb复习
  • P14 PyTorch AutoGrad
  • 前端报表如何实现无预览打印解决方案或静默打印
  • Operating System Course 2 - My OS
  • 离散数学 课时一 命题逻辑的基本概念
  • Word文档带有权限密码怎么办?
  • C++多态
  • 访问学者如何申请美国J1签证?
  • 使用gitlab ci/cd来发布一个.net 项目
  • 笔试题-2023-蔚来-数字芯片设计【纯净题目版】
  • ThreadLocal 详解
  • 【Java 面试合集】重写以及重载有什么区别能简单说说嘛
  • 到底什么是股票委托接口?
  • Linux驱动:VPU
  • 简介Servlet
  • Learning C++ No.7
  • 【MyBatis】第八篇:一级,二级缓存
  • 【大唐杯备考】——5G基站开通与调测(学习笔记)
  • redhat7 忘记root密码,重置办法