当前位置: 首页 > news >正文

利用逻辑回归判断病人肺部是否发生病变

      大家好,我是带我去滑雪!

      判断肺部是否发生病变可以及早发现疾病、指导治疗和监测疾病进展,以及预防和促进肺部健康,定期进行肺部评估和检查对于保护肺健康、预防疾病和提高生活质量至关重要。本期将利用相关医学临床数据结合逻辑回归判断病人肺部是否发生病变,其中响应变量为group(1表示肺部发生病变,0表示正常),特征变量为ESR(表示红细胞沉降率)、CRP(表示C-反应蛋白)、ALB(表示白蛋白)、Anti-SSA(表示抗SSA抗体)、Glandular involvement(表示腺体受累)、gender(表示性别)、c-PSA(cancer-specific prostate-specific antigen)、CA 15-3(Cancer Antigen 15-3)、TH17(Th17细胞)、ANA(代表抗核抗体)、CA125(Cancer Antigen 125)、LDH(代表乳酸脱氢酶)。下面开始使用逻辑回归进行肺部病变判断。

(1)导入相关模块与数据

import pandas as pd

import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score#导入包
import numpy as np
from scipy.stats import logistic
import matplotlib.pyplot as plt
titanic = pd.read_csv('filename1.csv')
titanic#导入数据

输出结果:

data.Ageimpute.data.ESR..mean.impute.data.CRP..mean.impute.data.ALB..mean.impute.data.Anti.SSA..median.impute.data.Glandular.involvement..median.impute.data.Gender..median.impute.data.c.PSA..mean.impute.data.CA153..mean.impute.data.TH17..mean.impute.data.ANA..median.impute.data.CA125..mean.impute.data.LDH..mean.data.group
06721.0000004.81000038.6926610000.3000003.5000010.33000013.000000212.2104930
17833.00000012.08991641.1000000000.61093122.400007.465353117.500000485.0000000
26924.0000002.25000042.7000000000.3000005.400008.02000004.360000236.0000000
37143.00000021.80000039.2000000000.30000011.110005.50000016.700000166.0000000
46920.0000002.43000047.6000003000.3000006.930004.31000003.520000223.0000000
.............................................
9546340.2749142.37000040.3000002000.4300006.100006.56000007.720000234.0000000
9556827.0000003.52000041.0000003000.3200007.520004.78000017.150000254.0000000
9566140.27491412.08991640.7000000000.61093112.463031.79000019.392344161.0000000
9576027.00000035.40000038.3000000000.2000007.680005.70000009.290000256.0000000
9586830.0000002.28000044.4000000000.2000005.320004.43000004.710000172.0000000

959 rows × 14 columns

(2)数据处理

X = titanic.iloc[:,:-1]
y = titanic.iloc[:,-1]
X=pd.get_dummies(X,drop_first = True)
X

(3)划分训练集与测试集

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
X_train, X_test, y_train, y_test =  train_test_split(X,y,test_size=0.2,stratify=None, random_state=0)#划分训练集和测试集

(4)拟合逻辑回归

model =  LogisticRegression(C=1e10)
model.fit(X_train, y_train)

model.intercept_    #模型截距
model.coef_       #模型回归系数

输出结果:

array([[ 0.03899236,  0.00458312,  0.000863  , -0.10140358, -0.09681747,0.74167081,  0.56011254,  0.24636358,  0.0226635 , -0.02681392,0.4987412 , -0.01932326,  0.00211805]])

(5)使用逻辑回归测试集进行评价分类准确率

model.score(X_test, y_test)

输出结果:

0.6822916666666666

(6)测试集预测所有种类的概率

prob = model.predict_proba(X_test)
prob[:5]

输出结果:

array([[0.71336774, 0.28663226],[0.34959506, 0.65040494],[0.91506198, 0.08493802],[0.24008149, 0.75991851],[0.55969043, 0.44030957]])

(7)模型预测

pred = model.predict(X_test)
pred[:5]#计算测试集的预测值,展示前五个值

输出结果:

array([0, 1, 0, 1, 0], dtype=int64)

(8)计算混淆矩阵

table = pd.crosstab(y_test, pred, rownames=['Actual'], colnames=['Predicted'])
table

输出结果:

Predicted01
Actual
09922
13932

(9)计算基于混淆矩阵诸多评价指标 

print(classification_report(y_test, pred, target_names=['yes', 'no']))

输出结果:

                precision    recall  f1-score   supportyes       0.72      0.82      0.76       121no       0.59      0.45      0.51        71accuracy                           0.68       192macro avg       0.65      0.63      0.64       192
weighted avg       0.67      0.68      0.67       192

(10)绘制ROC曲线

from scikitplot.metrics import plot_roc
plot_roc(y_test, prob)
x = np.linspace(0, 1, 100)
plt.plot(x, x, 'k--', linewidth=1)
plt.title('ROC Curve (Test Set)')#画ROC曲线
plt.savefig("E:\工作\硕士\博客\squares1.png",
            bbox_inches ="tight",
            pad_inches = 1,
            transparent = True,
            facecolor ="w",
            edgecolor ='w',
            dpi=300,
            orientation ='landscape')

输出结果:

 

 需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

http://www.lryc.cn/news/146800.html

相关文章:

  • 全民健康生活方式行动日,天猫健康联合三诺生物推出“15天持续测糖计划”
  • 设计模式行为型-状态模式
  • 弹窗、抽屉、页面跳转区别 | web交互入门
  • 说说Flink运行模式
  • 视频汇聚/视频云存储/视频监控管理平台EasyCVR新增首次登录强制修改密码
  • C语言控制语句——分支语句
  • 音视频 fmpeg命令裁剪和合并视频
  • 机器学习基础17-基于波士顿房价(Boston House Price)数据集训练模型的整个过程讲解
  • 哈希的应用——布隆过滤器
  • LNMT的多机部署和双机热备
  • 软件测试/测试开发丨Pytest和Allure报告 学习笔记
  • 十七、命令模式
  • 服务器安装 anaconda 及 conda: command not found [解决方案]
  • 自动驾驶和辅助驾驶系统的概念性架构(二)
  • 【c++】VC编译出的版本,发布版本如何使用
  • 自然语言处理(五):子词嵌入(fastText模型)
  • Zabbix“专家坐诊”第202期问答汇总
  • 【c语言】输出n行按如下规律排列的数
  • 023 - STM32学习笔记 - 扩展外部SDRAM(二) - 扩展外部SDRAM实验
  • 机器学习 | Python实现XGBoost极限梯度提升树模型答疑
  • 关于使用远程工具连接mysql数据库时,提示:Public Key Retrieval is not allowed
  • leetcode做题笔记​117. 填充每个节点的下一个右侧节点指针 II
  • 解决博客不能解析PHP直接下载源码问题
  • voc 转coco
  • 【C语言每日一题】03. 对齐输出
  • 七大排序完整版
  • C语言的数据类型简介
  • Fei-Fei Li-Lecture 16:3D Vision 【斯坦福大学李飞飞CV课程第16讲:3D Vision】
  • 【计算机视觉】YOLO 入门:训练 COCO128 数据集
  • 【数分面试答疑】XX场景如何分析问题的思考