当前位置: 首页 > news >正文

Fei-Fei Li-Lecture 16:3D Vision 【斯坦福大学李飞飞CV课程第16讲:3D Vision】

目录

P1 2D Detection and Segmentation

P2 Video = 2D + time series

P3 Focus on Two Problems

P4 Many more topics in 3D Vision

P5-10 Multi-View CNN 

P11 Experiments – Classification & Retrieval

P12 3D Shape Representations

P13--17 3D Shape Representations: Depth Map

Per-Pixel Loss (L2 Distance) 

Problem: Scale / Depth Ambiguity

Predicting Depth Maps

 P18--26   3D Shape Representations: Surface Normals 曲面法线

 3D Shape Representations: Voxels

Processing Voxel Inputs: 3D Convolution

 Generating Voxel Shapes: 3D Convolution

P27--34  3D Shape Representations: Point Cloud

Proessing Pointcloud Inputs: PointNet

Generating Pointcloud Outputs

 Predicting Point Clouds: Loss Function

 P35--51    3D Shape Representations: Triangle Mesh

 Predicting Meshes: Pixel2Mesh

 Predicting Triangle Meshes: Graph Convolution

Predicting Triangle Meshes: Vertex-Aligned Features

Predicting Meshes: Loss Function

P52--73 3D Shape Prediction: Mesh R-CNN

Mesh R-CNN: Hybrid 3D shape representation

 Mesh R-CNN Pipeline

Mesh R-CNN: ShapeNet Results

Datasets for 3D Objects

 Datasets for 3D Object Parts

 P74--92   3D Shape Representations: Implicit Functions

 Algebraic Surfaces (Implicit)

 Constructive Solid Geometry (Implicit) 

 Level Set Methods (Implicit) 

 NeRF: Representing Scenes as Neural Radiance Fields

P93 Summary: 3D Shape Representations


P1 2D Detection and Segmentation

Classification分P类:没有空间信息,只是对一张图片进行分类

Semantic Segmentation语义分割: 没有物体,只有像素点,对像素点进行分类

Object Detection目标检测:直接识别出物体并进行分类

Instance Segmentation:实例分割=目标检测+语义分割 (第一次听说这个)

语义分割只需要分出不同类就行,同类的不同个体不需要分,但是Instance Segmentation在语义分割的基础上又把不同的类进行了分割:目标检测后,需要对检测的部分做进一步的语义分割

P2 Video = 2D + time series

视频就是2D的图像加上了时间序列

P3 Focus on Two Problems

今天需要解决的两个问题

①由一张输入图像得到一个3D模型

②识别3D模型进行类别判定

P4 Many more topics in 3D Vision

3D Representations 三维表示法
Computing Correspondences 计算对应关系
Multi-view stereo 多视角立体
Structure from Motion 运动结构
Simultaneous Localization and Mapping (SLAM) 同步定位和绘图
View Synthesis 视图合成
Differentiable Graphics 可变图形
3D Sensors 三维传感器

P5-10 Multi-View CNN 

CNN1:提取图像特征的卷积神经网络

CNN2:生成描述形状符的卷积神经网络

P11 Experiments – Classification & Retrieval

Q:MVCNN? SPH? LFD? 3D ShapeNets? FV? 

P12 3D Shape Representations

Q: Voxel Grid?  Pointcloud?  Mesh?  Surface? 

A:下面详细讲啦

P13--17 3D Shape Representations: Depth Map

RGB image + Depth image = RGB-D Image (2.5D)

Q:H是Height ?  W是Width?

 可以使用全卷积神经网络进行深度图预测,得到两个估计的深度图,然后还可以得到每像素Loss 

Per-Pixel Loss (L2 Distance) 

Q:L2 距离是什么?

Problem: Scale / Depth Ambiguity

Q:具体是什么意思以及怎么解决?

A: 意思大概是单目图像中信息有限

Predicting Depth Maps

 Scale invariant 尺度不变性

 P18--26   3D Shape Representations: Surface Normals 曲面法线

对于每个像素,表面法线给出一个向量,表示该像素的世界上的对象的法向向量

假设 RGB Image为 3 x H x W,那么法线图 Normals: 3 x H x W

Predicting Normals

 3D Shape Representations: Voxels

• Represent a shape with a V x V x V grid of occupancies     网格表示形状

• Just like segmentation masks in Mask R-CNN, but in 3D!   分割掩码

• (+) Conceptually simple: just a 3D grid!     只是一个3D网格

• (-) Need high spatial resolution to capture fine structures 需要高空间分辨率捕捉精细结构

• (-) Scaling to high resolutions is nontrivial !   缩放到高分辨率并不容易

Processing Voxel Inputs: 3D Convolution

 Generating Voxel Shapes: 3D Convolution

 Voxel Problems: Memory Usage

        Storing 1024(3次方) voxel grid takes 4GB of memory

Scaling Voxels: Oct-Trees 八叉树

Q: 没太看懂这个Oct-Trees

P27--34  3D Shape Representations: Point Cloud

• Represent shape as a set of P points in 3D space

• (+) Can represent fine structures without huge numbers of points

• ( ) Requires new architecture, losses, etc

• (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing  

提取网格为渲染或其他应用提取网格需要进行后处理

Proessing Pointcloud Inputs: PointNet

 MLP ?  

Max-Pool?

Generating Pointcloud Outputs

 Predicting Point Clouds: Loss Function

 

 P35--51    3D Shape Representations: Triangle Mesh

 Predicting Meshes: Pixel2Mesh

 Idea #1: Iterative mesh refinement

Start from initial ellipsoid mesh Network predicts offsets for each vertex Repeat.

从初始椭球网格开始 网络预测每个顶点的偏移 重复。

 Predicting Triangle Meshes: Graph Convolution

 

 Problem: How to incorporate image features?

Predicting Triangle Meshes: Vertex-Aligned Features

Predicting Meshes: Loss Function

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

P52--73 3D Shape Prediction: Mesh R-CNN

 

Mesh R-CNN: Hybrid 3D shape representation

 Mesh R-CNN Pipeline

 

Mesh R-CNN: ShapeNet Results

Datasets for 3D Objects

Large-scale Synthetic Objects: ShapeNet, 3M models

ModelNet: absorbed by ShapeNet

ShapeNetCore: 51.3K models in 55 categories

 Datasets for 3D Object Parts

Fine-grained Parts: PartNet

• Fine-grained (+mobility)

• Instance-level

• Hierarchical

 P74--92   3D Shape Representations: Implicit Functions

 Algebraic Surfaces (Implicit)

 Constructive Solid Geometry (Implicit) 

 Level Set Methods (Implicit) 

 

 

 NeRF: Representing Scenes as Neural Radiance Fields

 

 

P93 Summary: 3D Shape Representations

 

 

 

 

http://www.lryc.cn/news/146772.html

相关文章:

  • 【计算机视觉】YOLO 入门:训练 COCO128 数据集
  • 【数分面试答疑】XX场景如何分析问题的思考
  • html中如何用vue语法,并使用UI组件库 ,html中引入vue+ant-design-vue或者vue+element-plus
  • 【数据结构】二叉数的存储与基本操作的实现
  • 使用 Netty 实现群聊功能的步骤和注意事项
  • 一篇文章搞定《WebView的优化及封装》
  • FreeSWITCH 1.10.10 简单图形化界面5 - 使用百度TTS
  • DP读书:不知道干什么就和我一起读书吧
  • 【Linux】进程通信 — 信号(上篇)
  • JS弃之可惜食之无味的代码冷知识
  • 数据结构初阶--排序
  • 赴日IT 如何提高去日本做程序员的几率?
  • c# 使用了 await、asnync task.run 三者结合使用
  • C#获取屏幕缩放比例
  • Rn实现省市区三级联动
  • SpringCloud学习笔记(十)_SpringCloud监控
  • 测试理论与方法----测试流程的第二个环节:测试计划
  • postgresql-子查询
  • Linux 系统运维工具之 OpenLMI
  • 8天长假快来了,Python分析【去哪儿旅游攻略】数据,制作可视化图表
  • 【HSPCIE仿真】输入网表文件(5)基本仿真输出
  • uni-app中使用iconfont彩色图标
  • Hystrix: Dashboard流监控
  • iconfont 图标在vue里的使用
  • QT登陆注册界面练习
  • MySQL DATE_SUB的实践
  • OpenCV最常用的50个函数
  • Android AGP8.1.0组件化初探
  • 文件修改时间能改吗?怎么改?
  • 2023年下半年软考报名注意事项!