当前位置: 首页 > news >正文

VGG的结构:视觉几何组(Visual Geometry Group)

目录

1. VGG 的结构

2. VGG 的网络细节

3. VGG 的代码实现


1. VGG 的结构

牛津大学的视觉几何组(Visual Geometry Group)设计了 VGGNet(也称为 VGG),一种经典的卷积神经网络 (CNN) 架构。在 2014 年 ILSVRC 分类任务中,VGG 取得了第二名的成绩。现在过去多年,VGG 仍然被广泛应用在图像识别、语音识别、机器翻译、机器人等领域。

VGG 具有 16 层(VGG-16)和 19 层(VGG-19)的卷积神经网络,两者的结构类似,接下来详细解读 VGG-16 的结构,VGG-16 由 13 个卷积层和 3 个全连接层组成(层数是计算全连接层的卷积层个数),如下图所示,图中 conv 为卷积层,pool 为池化层,最后三个 fc 4096 为全连接层。

图片

VGG16相比之前网络的改进是3个3*3卷积核来代替7x7卷积核,2个3*3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,减少参数,提升了网络的深度。

比如,3个步长为1的卷积核(3*3)的层层叠加,其参数总量为 3*(9*C^2) ,如果直接使用7*7的卷积核,其参数总量为 49*C^2 ,这里 C 指的是输入和输出的通道数。很明显,27*C^2小于49*C^2,即减少了参数。

2. VGG 的网络细节

VGG-16 采用了五组卷积与三个全连接层,最后使用 Softmax 做分类。

VGG-16 有个显著的特点:每次经过池化层后特征图的尺寸减小一倍,而通道数则增加一倍(最后一个池化层除外)。每一层的卷积层的细节如表格所示:

回顾特征图的计算

O 是输出图像,I 是输入图像,

P 是 padding,K 是 kernel size,S 是步长。

输出特征图大小计算公式 O = (I + 2P – K) / S + 1

参数量:K*K* 输入的 channel * 输出的 channel

图片

图片

图片

图片

图片

3. VGG 的代码实现

VGG-16 的五组卷积相似,在撰写代码的时候,可以建一个 Layer 类,通过循环添加每个层的顺序执行,请查看下面的代码 make_layers 函数。

图片

图片

图片

http://www.lryc.cn/news/145695.html

相关文章:

  • VBA:按照Excel工作表中的名称列自动汇总多个工作薄中对应sheet中所需要的数据
  • Mybatis1.9 批量删除
  • CUDA小白 - NPP(2) -图像处理-算数和逻辑操作(2)
  • python+redis实现布隆过滤器(含redis5.0版本以上和5.0以下版本的两份代码)
  • SpringBoot Thymeleaf iText7 生成 PDF(2023/08/29)
  • 【核磁共振成像】并行采集MRI
  • 深度图相关评测网站
  • 本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama
  • Agilent33220A任意波形发生器
  • springboot第37集:kafka,mqtt,Netty,nginx,CentOS,Webpack
  • NVIDIA DLI 深度学习基础 答案 领取证书
  • axios模拟表单提交
  • 智安网络|探索物联网架构:构建连接物体与数字世界的桥梁
  • 胡歌深夜发文:我对不起好多人
  • C++二级题
  • NetApp AFF A900:适用于数据中心的超级产品
  • 入海排污口水质自动监测系统,助力把好入河入海“闸门”
  • AUTOSAR知识点 之 ECUM (一):基础知识梳理(概念部分)
  • leetcode分类刷题:哈希表(Hash Table)(二、数组交集问题)
  • [Mac软件]Adobe After Effects 2023 v23.5 中文苹果电脑版(支持M1)
  • 范德波尔方程详细介绍与Python实现(附说明)
  • 常用的GPT插件
  • 智慧校园用电安全解决方案
  • 【教程】DGL中的子图分区函数partition_graph讲解
  • 关于layui table回显以及选择下一页时记住上一页数据的问题
  • kafka消息系统实战
  • Kafka3.0.0版本——Leader故障处理细节原理
  • BI系统框架模型
  • 双向交错CCM图腾柱无桥单相PFC学习仿真与实现(3)硬件功能实现
  • 微软用 18 万行 Rust 重写了 Windows 内核