当前位置: 首页 > news >正文

【大数据离线开发】7.4 HBase数据保存和过滤器

7.4 数据保存的过程

注意:数据的存储,都需要注意Region的分裂

  • HDFS:数据的平衡 ——> 数据的移动(拷贝)
  • HBase:数据越来越多 ——> Region的分裂 ——> 数据的移动(拷贝)

在这里插入图片描述

业务越来越大,数据越来越大,必然会发生Region的分裂。

运维:可以通过增加节点,或者预分配的方式

7.5 HBase的过滤器

过滤器:相当于SQL语句中的where查询条件

使用下面java程序操作HBase,仅需要修改IP地址

package demo.filter;import java.util.ArrayList;
import java.util.List;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
import org.junit.Test;public class DataInit {@Testpublic void testCreateTable() throws Exception{//指定的配置信息: ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.111");//创建一个HBase客户端: HBaseAdminHBaseAdmin admin = new HBaseAdmin(conf);//创建一个表的描述符: 表名HTableDescriptor hd = new HTableDescriptor(TableName.valueOf("emp"));//创建列族描述符HColumnDescriptor hcd1 = new HColumnDescriptor("empinfo");//加入列族hd.addFamily(hcd1);//创建表admin.createTable(hd);//关闭客户端admin.close();}@Testpublic void testPutData() throws Exception{//指定的配置信息: ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.111");//客户端HTable table = new HTable(conf, "emp");//第一条数据Put put1 = new Put(Bytes.toBytes("7369"));put1.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("SMITH"));Put put2 = new Put(Bytes.toBytes("7369"));put2.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("800"));//第二条数据Put put3 = new Put(Bytes.toBytes("7499"));put3.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("ALLEN"));Put put4 = new Put(Bytes.toBytes("7499"));put4.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("1600"));		//第三条数据Put put5 = new Put(Bytes.toBytes("7521"));put5.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("WARD"));Put put6 = new Put(Bytes.toBytes("7521"));put6.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("1250"));		//第四条数据Put put7 = new Put(Bytes.toBytes("7566"));put7.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("JONES"));Put put8 = new Put(Bytes.toBytes("7566"));put8.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("2975"));		//第五条数据Put put9 = new Put(Bytes.toBytes("7654"));put9.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("MARTIN"));Put put10 = new Put(Bytes.toBytes("7654"));put10.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("1250"));//第六条数据Put put11 = new Put(Bytes.toBytes("7698"));put11.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("BLAKE"));Put put12 = new Put(Bytes.toBytes("7698"));put12.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("2850"));//第七条数据Put put13 = new Put(Bytes.toBytes("7782"));put13.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("CLARK"));Put put14 = new Put(Bytes.toBytes("7782"));put14.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("2450"));//第八条数据Put put15 = new Put(Bytes.toBytes("7788"));put15.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("SCOTT"));Put put16 = new Put(Bytes.toBytes("7788"));put16.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("3000"));		//第九条数据Put put17 = new Put(Bytes.toBytes("7839"));put17.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("KING"));Put put18 = new Put(Bytes.toBytes("7839"));put18.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("5000"));	//第十条数据Put put19 = new Put(Bytes.toBytes("7844"));put19.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("TURNER"));Put put20 = new Put(Bytes.toBytes("7844"));put20.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("1500"));	//第十一条数据Put put21 = new Put(Bytes.toBytes("7876"));put21.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("ADAMS"));Put put22 = new Put(Bytes.toBytes("7876"));put22.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("1100"));	//第十二条数据Put put23 = new Put(Bytes.toBytes("7900"));put23.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("JAMES"));Put put24 = new Put(Bytes.toBytes("7900"));put24.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("950"));//第十三条数据Put put25 = new Put(Bytes.toBytes("7902"));put25.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("FORD"));Put put26 = new Put(Bytes.toBytes("7902"));put26.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("3000"));//第十四条数据Put put27 = new Put(Bytes.toBytes("7934"));put27.add(Bytes.toBytes("empinfo"), Bytes.toBytes("ename"), Bytes.toBytes("MILLER"));Put put28 = new Put(Bytes.toBytes("7934"));put28.add(Bytes.toBytes("empinfo"), Bytes.toBytes("sal"), Bytes.toBytes("1300"));//构造ListList<Put> list = new ArrayList<Put>();list.add(put1);list.add(put2);list.add(put3);list.add(put4);list.add(put5);list.add(put6);list.add(put7);list.add(put8);list.add(put9);list.add(put10);list.add(put11);list.add(put12);list.add(put13);list.add(put14);list.add(put15);list.add(put16);list.add(put17);list.add(put18);list.add(put19);list.add(put20);list.add(put21);list.add(put22);list.add(put23);list.add(put24);list.add(put25);list.add(put26);list.add(put27);list.add(put28);		//插入数据table.put(list);table.close();		}
}

在这里插入图片描述

常见的过滤器

  1. 列值过滤器:select * from emp where sal = 3000;

  2. 列名前缀过滤器:查询员工的姓名 select ename form emp;

  3. 多个列名前缀过滤器:查询员工的姓名、薪水 select ename, sal from emp;

  4. 行键过滤器:通过Row可以查询,类似通过Get查询数据

  5. 组合几个过滤器查询数据:where 条件1 and(or)条件2

public class TestHBaseFilter {@Testpublic void testSingleColumnValueFilter() throws Exception{//列值过滤器: 查询薪水等于3000的员工//  select * from emp where sal=3000//配置ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.111");//得到客户端HTable table = new HTable(conf,"emp");//定义一个过滤器SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("empinfo"),    //列族Bytes.toBytes("sal"),        //列名CompareOp.EQUAL,             //比较运算符Bytes.toBytes("3000"));      //值//定义一个扫描器Scan scan = new Scan();scan.setFilter(filter);//查询数据:结果中只有员工姓名ResultScanner rs = table.getScanner(scan);for(Result r:rs){String name = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("ename")));System.out.println(name);}table.close();}@Testpublic void testColumnPrefixFilter() throws Exception{//列名前缀过滤器  查询员工的姓名:  select ename from emp;//配置ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.111");//得到客户端HTable table = new HTable(conf,"emp");//定义一个过滤器ColumnPrefixFilter filter = new ColumnPrefixFilter(Bytes.toBytes("ename"));//定义一个扫描器Scan scan = new Scan();scan.setFilter(filter);//查询数据:结果中只愿员工的姓名ResultScanner rs = table.getScanner(scan);for(Result r:rs){String name = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("ename")));//获取员工的薪水String sal = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("sal")));System.out.println(name+"\t"+sal);}table.close();		}@Testpublic void testMultipleColumnPrefixFilter() throws Exception{//多个列名前缀过滤器//查询员工信息:员工姓名 薪水//配置ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.11");//得到客户端HTable table = new HTable(conf,"emp");//二维数组byte[][] names = {Bytes.toBytes("ename"),Bytes.toBytes("sal")};//定义一个过滤器MultipleColumnPrefixFilter filter = new MultipleColumnPrefixFilter(names);//定义一个扫描器Scan scan = new Scan();scan.setFilter(filter);//查询数据ResultScanner rs = table.getScanner(scan);for(Result r:rs){String name = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("ename")));//获取员工的薪水String sal = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("sal")));System.out.println(name+"\t"+sal);}table.close();			}@Testpublic void testRowFilter() throws Exception{//查询员工号7839的信息//配置ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.11");//得到客户端HTable table = new HTable(conf,"emp");//定义一个行键过滤器RowFilter filter = new RowFilter(CompareOp.EQUAL,  //比较运算符new RegexStringComparator("7839")); //使用正则表达式来代表值//定义一个扫描器Scan scan = new Scan();scan.setFilter(filter);//查询数据ResultScanner rs = table.getScanner(scan);for(Result r:rs){String name = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("ename")));//获取员工的薪水String sal = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("sal")));System.out.println(name+"\t"+sal);}table.close();	}  @Testpublic void testFilter() throws Exception{/** 查询工资等于3000的员工姓名      select ename from emp where sal=3000;* 1、列值过滤器:工资等于3000* 2、列名前缀过滤器:姓名*///配置ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.11");//得到客户端HTable table = new HTable(conf,"emp");//第一个过滤器 列值过滤器:工资等于3000SingleColumnValueFilter filter1 = new SingleColumnValueFilter(Bytes.toBytes("empinfo"),     //列族Bytes.toBytes("sal"),  //列名CompareOp.EQUAL,  //比较运算符Bytes.toBytes("3000"));      //值//第二个过滤器:列名前缀 姓名ColumnPrefixFilter filter2 = new ColumnPrefixFilter(Bytes.toBytes("ename"));//创建一个FliterList//Operator.MUST_PASS_ALL 相当于 and//Operator.MUST_PASS_ONE 相当于 orFilterList list = new FilterList(Operator.MUST_PASS_ALL);list.addFilter(filter1);list.addFilter(filter2);//定义一个扫描器Scan scan = new Scan();scan.setFilter(list);//查询数据ResultScanner rs = table.getScanner(scan);for(Result r:rs){String name = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("ename")));//获取员工的薪水String sal = Bytes.toString(r.getValue(Bytes.toBytes("empinfo"), Bytes.toBytes("sal")));System.out.println(name+"\t"+sal);}table.close();}
}

在这里插入图片描述

7.6 HBase上的MapReduce

1、建立输入的表create 'word','content'put 'word','1','content:info','I love Beijing'put 'word','2','content:info','I love China'put 'word','3','content:info','Beijing is the capital of China'2、输出表:create 'stat','content'注意:export HADOOP_CLASSPATH=$HBASE_HOME/lib/*:$CLASSPATH

Mapper程序

//这时候处理的就是HBase表的一条数据                 
//没有k1和v1,<k1  v1>代表输入,因为输入的就是表中一条记录
public class WordCountMapper extends TableMapper<Text, IntWritable> {@Overrideprotected void map(ImmutableBytesWritable key, Result value,Context context)throws IOException, InterruptedException {/** key和value代表从表中输入的一条记录* key: 行键* value:数据*///获取数据: I love beijingString data = Bytes.toString(value.getValue(Bytes.toBytes("content"), Bytes.toBytes("info")));//分词String[] words = data.split(" ");for(String w:words){context.write(new Text(w), new IntWritable(1));}}
}

Reducer程序

//                                                    k3      v3     keyout代表输出的一条记录:指定行键
public class WordCountReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {@Overrideprotected void reduce(Text k3, Iterable<IntWritable> v3,Context context)throws IOException, InterruptedException {// 对v3求和int total = 0;for(IntWritable v:v3){total = total + v.get();}//输出:也是表中的一条记录//构造一个Put对象,把单词作为rowkey行键Put put = new Put(Bytes.toBytes(k3.toString()));put.add(Bytes.toBytes("content"), //列族Bytes.toBytes("result"), //列Bytes.toBytes(String.valueOf(total)));//输出context.write(new ImmutableBytesWritable(Bytes.toBytes(k3.toString())), //把这个单词作为key 就是输出的行键put); //表中的一条记录,得到的结果}}

main程序

public class WordCountMain {public static void main(String[] args) throws Exception {//获取ZK的地址//指定的配置信息: ZooKeeperConfiguration conf = new Configuration();conf.set("hbase.zookeeper.quorum", "192.168.157.111");//创建一个任务,指定程序的入口Job job = Job.getInstance(conf);job.setJarByClass(WordCountMain.class);//定义一个扫描器 只读取:content:info这个列的数据Scan scan = new Scan();//可以使用filter,还有一种方式来过滤数据scan.addColumn(Bytes.toBytes("content"), Bytes.toBytes("info"));//指定mapper,使用工具类设置MapperTableMapReduceUtil.initTableMapperJob(Bytes.toBytes("word"),    //输入的表scan,    //扫描器,只读取想要处理的数据WordCountMapper.class, Text.class, IntWritable.class, job);//指定Reducer,使用工具类设置ReducerTableMapReduceUtil.initTableReducerJob("stat", WordCountReducer.class, job);//执行任务job.waitForCompletion(true);}}

将编写的程序打包成jar包,上传到全分布或者伪分布环境下,启动环境运行,会有一个exception异常。

在Hadoop集群上会去访问HBase,需要HBase依赖

在这里插入图片描述

注意:export HADOOP_CLASSPATH=HBASEHOME/lib/∗:HBASE_HOME/lib/*:HBASEHOME/lib/:CLASSPATH

在这里插入图片描述

在这里插入图片描述

http://www.lryc.cn/news/14482.html

相关文章:

  • CentOS7安装MariaDB步骤
  • 软件测试13个最容易犯的错误
  • 华为OD机试真题Java实现【5键键盘的输出】真题+解题思路+代码(20222023)
  • 化解射频和微波设计挑战的六个技巧
  • linux内核—进程调度(核心)
  • 【STM32笔记】__WFI();进入不了休眠的可能原因(系统定时器SysTick一直产生中断)
  • 【期末复习】例题讲解Dijkstra算法
  • Pytorch 基础之张量索引
  • JVM系统优化实践(1):JVM概览
  • 优秀!19年后,它再次成为TIOBE年度编程语言
  • 剑指 Offer 26. 树的子结构
  • 他是00年的,我们卷不过他...
  • C#开发的OpenRA的OpenGL创建纹理流程
  • 3D目标检测(一)—— 基于Point-Based方法的PointNet系列
  • 《设计模式》策略模式
  • 【离散数学】1. 数理逻辑
  • Java8新特性学习
  • SPARK outputDeterministicLevel的作用--任务全部重试或者部分重试
  • 图数据库中的 OLTP 与 OLAP 融合实践
  • Shader Graph简介
  • kubectl
  • 实验室设计SICOLAB第三方检测中心实验室设计
  • GPS经纬度转距离
  • 7-周赛333总结
  • 电子招标采购系统源码—互联网+招标采购
  • SQL注入和XSS攻击
  • js Map的使用
  • 企业应该怎么管理香港服务器?
  • 软件设计(十四)-UML建模(上)
  • 本地主机搭建服务器后如何让外网访问?快解析内网端口映射