当前位置: 首页 > news >正文

python-数据可视化-使用API

使用Web应用程序编程接口 (API)自动请求网站的特定信息而不是整个网页,再对这些信息进行可视化

使用Web API

Web API是网站的一部分,用于与使用具体URL请求特定信息的程序交互。这种请求称为API调用 。请求的数据将以易于处理的格式(如JSON或CSV)返回。依赖于外部数据源的大多数应用程序依赖于API调用,如集成社交媒体网站的应用程序

Git和GitHub

GitHub的名字源自Git,后者是一个分布式版本控制系统,帮助人们管理为项目所做的工作,避免一个人所做的修改影响其他人所做的修改。在项目中实现新功能时,Git跟踪你对每个文件所做的修改。确定代码可行后,你提交所做的修改,而Git将记录项目最新的状态。如果犯了错,想撤销所做的修改,你可以轻松地返回到以前的任何可行状态。(要更深入地了解如何使用Git进行版本控制,请参阅附录D。)GitHub上的项目都存储在仓库中,后者包含与项目相关联的一切:代码、项目参与者的信息、问题或bug报告,等等

在本章中,我们将编写一个程序,自动下载GitHub上星级最高的Python项目的信息,并对这些信息进行可视化

使用API调用请求数据

GitHub的API让你能够通过API调用来请求各种信息。要知道API调用是什么样的,请在浏览器的地址栏中输入如下地址
https://api.github.com/search/repositories?q=language:python&sort=star

https://api.github.com/search/repositories?q=language:python&sort=star

这个调用返回GitHub当前托管了多少个Python项目,以及有关最受欢迎的Python仓库的信息

https://api.github.com/ 将请求发送到GitHub网站中响应API调用的部分,接下来的search/repositories 让API搜索GitHub上的所有仓库

repositories 后面的问号指出需要传递一个实参。q 表示查询,而等号(= )让我们能够开始指定查询。我们使用language:python 指出只想获取主要语言为Python的仓库的信息。最后的&sort=stars 指定将项目按星级排序

在这里插入图片描述

安装requests

pip install requests

处理API响应

import requests
# 执行API调用并存储响应。
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
headers = {'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
print(f"Status code: {r.status_code}")	# Status code: 200
# 将API响应赋给一个变量。
response_dict = r.json()
# 处理结果。
print(response_dict.keys())	# dict_keys(['total_count', 'incomplete_results', 'items'])

状态码200表示请求成功
方法json() 将这些信息转换为一个Python字典

处理响应字典

# 将API响应赋给一个变量。
response_dict = r.json()
print(f"Total repositories: {response_dict['total_count']}")	# 9420397	# 仓库总数
# 探索有关仓库的信息。
repo_dicts = response_dict['items']
print(f"Repositories returned: {len(repo_dicts)}")	# 30	# 返回30个仓库
# 研究第一个仓库。
repo_dict = repo_dicts[0]
print(f"\nKeys: {len(repo_dict)}")	# Keys: 80	# repo_dict 包含80个键
for key in sorted(repo_dict.keys()):print(key)

提取repo_dict 中与一些键相关联的值

print("\nSelected information about first repository:") # Selected information about first repository:
print(f"Name: {repo_dict['name']}")                     # Name: flask
print(f"Owner: {repo_dict['owner']['login']}")          # Owner: pallets
print(f"Stars: {repo_dict['stargazers_count']}")        # Stars: 63955
print(f"Repository: {repo_dict['html_url']}")           # Repository: https://github.com/pallets/flask
print(f"Created: {repo_dict['created_at']}")            # Created: 2010-04-06T11:11:59Z
print(f"Updated: {repo_dict['updated_at']}")            # Updated: 2023-08-27T04:37:37Z
print(f"Description: {repo_dict['description']}")       # Description: The Python micro framework for building web applications.

owner login 所有者登录名

概述最受欢迎的仓库

# 研究有关仓库的信息。
repo_dicts = response_dict['items']
print(f"Repositories returned: {len(repo_dicts)}")print("\nSelected information about each repository:")
for repo_dict in repo_dicts:print(f"\nName: {repo_dict['name']}")print(f"Owner: {repo_dict['owner']['login']}")print(f"Stars: {repo_dict['stargazers_count']}")print(f"Repository: {repo_dict['html_url']}")print(f"Description: {repo_dict['description']}")

代码结果如下:

Repositories returned: 30Selected information about each repository:Name: flask
Owner: pallets
Stars: 63955
Repository: https://github.com/pallets/flask
Description: The Python micro framework for building web applications.Name: langchain
Owner: langchain-ai
Stars: 60009
Repository: https://github.com/langchain-ai/langchain
Description: ⚡ Building applications with LLMs through composability ⚡Name: ailearning
Owner: apachecn
Stars: 36223
Repository: https://github.com/apachecn/ailearning
Description: AiLearning:数据分析+机器学习实战+线性代数+PyTorch+NLTK+TF2Name: linux-insides
Owner: 0xAX
Stars: 28546
Repository: https://github.com/0xAX/linux-insides
Description: A little bit about a linux kernel

监视API的速率限制

大多数API存在速率限制,也就是说,在特定时间内可执行的请求数存在限制

要获悉是否接近了GitHub的限制,请在浏览器中输入https://api.github.com/rate_limit,你将看到类似于下面的响应:https://api.github.com/rate_limit

在这里插入图片描述
注意:很多API要求注册获得API密钥后才能执行API调用

使用Plotly可视化仓库

import requests
from plotly.graph_objs import Bar
from plotly import offline# 执行API调用并存储响应。
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
headers = {'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
print(f"Status code: {r.status_code}")# 处理结果。
response_dict = r.json()
repo_dicts = response_dict['items']
repo_names, stars = [], []
for repo_dict in repo_dicts:repo_names.append(repo_dict['name'])stars.append(repo_dict['stargazers_count'])# 可视化。
data = [{'type': 'bar','x': repo_names,'y': stars,
}]
my_layout = {'title': 'GitHub上最受欢迎的Python项目','xaxis': {'title': 'Repository'},'yaxis': {'title': 'Stars'},
}fig = {'data': data, 'layout': my_layout}
offline.plot(fig, filename='python_repos.html')

在这里插入图片描述

改进Plotly图表 data my_layout

可在data 和my_layout 中以键值对的形式指定各种样式

data修改图表
my_layout修改字

data = [{'type': 'bar','x': repo_names,'y': stars,'marker': {'color': 'red','line': {'width': 1.5, 'color': 'rgb(25, 25, 25)'}},'opacity': 0.6,
}]
my_layout = {'title': 'GitHub上最受欢迎的Python项目','titlefont': {'size': 28},'xaxis': {'title': 'Repository','titlefont': {'size': 24},'tickfont': {'size': 14},},'yaxis': {'title': 'Stars','titlefont': {'size': 24},'tickfont': {'size': 14},},
}

在这里插入图片描述

添加自定义工具提示 hovertext

工具提示:将鼠标指向条形将显示其表示的信息

# 处理结果。
response_dict = r.json()
repo_dicts = response_dict['items']
repo_names, stars, labels = [], [], []
for repo_dict in repo_dicts:repo_names.append(repo_dict['name'])stars.append(repo_dict['stargazers_count'])owner = repo_dict['owner']['login']description = repo_dict['description']label = f"{owner}<br />{description}"labels.append(label)
# 可视化。
data = [{'type': 'bar','x': repo_names,'y': stars,'hovertext': labels,'marker': {'color': 'rgb(60, 100, 150)','line': {'width': 1.5, 'color': 'rgb(25, 25, 25)'}},'opacity': 0.6,
}]

Plotly允许在文本元素中使用HTML代码
在这里插入图片描述

在图表中添加可单击的链接

点击图表底端的项目名,可以访问项目在GitHub上的主页

# 处理结果。
response_dict = r.json()
repo_dicts = response_dict['items']
repo_links, stars, labels = [], [], []
for repo_dict in repo_dicts:repo_name = repo_dict['name']repo_url = repo_dict['html_url']repo_link = f"<a href='{repo_url}'>{repo_name}</a>"repo_links.append(repo_link)stars.append(repo_dict['stargazers_count'])owner = repo_dict['owner']['login']description = repo_dict['description']label = f"{owner}<br />{description}"labels.append(label)

将data里x的值改为repo_links

data = [{'x': repo_links,
}]

深入了解Plotly和GitHub API

想要深入了解如何生成Plotly图表,可以看Plotly User Guide in Python和Python Figure Reference

Hacker News API

Hacker News网站:Hacker News的API让你能够访问有关该网站所有文章和评论的信息,且不要求通过注册获得密钥

import requests
import json# 执行API调用并存储响应。
url = 'https://hacker-news.firebaseio.com/v0/item/19155826.json'
r = requests.get(url)
print(r.status_code)# 200# 探索数据的结构。
response_dict = r.json()
readable_file = 'readable_hn_data.json'
with open(readable_file, 'w') as f:json.dump(response_dict, f, indent=4)

在这里插入图片描述

下面的URL返回一个列表,其中包含Hacker News上当前排名靠前的文章的ID:

https://hacker-news.firebaseio.com/v0/topstories.json
from operator import itemgetter
import requests# 执行API调用并存储响应。
url = 'https://hacker-news.firebaseio.com/v0/topstories.json'
r = requests.get(url)
# print(f"Status code: {r.status_code}")# 处理有关每篇文章的信息。
submission_ids = r.json()
submission_dicts = []
for submission_id in submission_ids[:10]:# 对于每篇文章,都执行一个API调用。url = f"https://hacker-news.firebaseio.com/v0/item/{submission_id}.json"r = requests.get(url)# print(f"id: {submission_id}\tstatus: {r.status_code}")response_dict = r.json()# 对于每篇文章,都创建一个字典。submission_dict = {'title': response_dict['title'],'hn_link': f"http://news.ycombinator.com/item?id={submission_id}",'comments': response_dict['descendants'],}submission_dicts.append(submission_dict)submission_dicts = sorted(submission_dicts, key=itemgetter('comments'),reverse=True)for submission_dict in submission_dicts:print(f"\nTitle: {submission_dict['title']}")print(f"Discussion link: {submission_dict['hn_link']}")print(f"Comments: {submission_dict['comments']}")

在这里插入图片描述

http://www.lryc.cn/news/143119.html

相关文章:

  • 窗口看门狗
  • 开发新能源的好处
  • error: can‘t find Rust compiler
  • 全面解析MES系统中的车间退料管理
  • 探究finally代码块是否执行
  • leetcode刷题(字符串相加、包含每个查询的最小区间、模拟行走机器人、环形子数组的最大和、满足不等式的最大值、四数之和、树中距离之和)
  • Grafana reporter定时报表踩坑记录
  • Flutter 状态管理引子
  • CFC编程入门_【10分钟学会】
  • golang无需创建新切片
  • Django基础5——ORM中间程序
  • SpringAOP详解(上)
  • C++ 存储类
  • 【教程分享】Docker搭建Zipkin,实现数据持久化到MySQL、ES
  • 数据库——MySQL高性能优化规范
  • openapi中job提交
  • Spring Boot 整合 分布式搜索引擎 Elastic Search 实现 数据聚合
  • 深入探讨代理技术:保障网络安全与爬虫效率
  • 【云原生】Docker私有仓库 RegistryHabor
  • 二叉树先序遍历的两种思路
  • 小研究 - JVM 逃逸技术与 JRE 漏洞挖掘研究(一)
  • 好用的可视化大屏适配方案
  • 言有三新书出版,《深度学习之图像识别(全彩版)》上市发行,配套超详细的原理讲解与丰富的实战案例!...
  • 英特尔开始加码封装领域 | 百能云芯
  • 基于大数据+django+mysql的学习资源推送系统的设计与实现(含报告+源码+指导)
  • CCF HPC China2023 | 盛大开幕,邀您关注澎峰科技
  • 【git进阶使用】 告别只会git clone 学会版本控制 ignore筛选 merge冲突等进阶操作
  • 【【萌新的STM32学习-16中断的基本介绍1】】
  • ctfshow-红包题第二弹
  • C# winform中无标题栏窗口如何实现鼠标拖动?