当前位置: 首页 > news >正文

【数据结构】回溯算法公式化解题 leetcode经典题目带刷:全排列、组合、子集

目录

    • 回溯算法
      • 一、什么是回溯算法
        • 1、基本思想:
        • 2、一般步骤:
      • 二、题目带练
        • 1、全排列
        • 2、组合
        • 3、子集
      • 三、公式总结

回溯算法

一、什么是回溯算法

回溯算法(Backtracking Algorithm)是一种解决组合问题排列问题选择问题等一类问题的常用算法。它通过尝试所有可能的选择来找到问题的解,当发现当前选择不符合要求时,就回溯到之前的状态,然后尝试其他的选择。

1、基本思想:

  1. 从问题的起始点开始,进行尝试,每次选择一个可能的路径。
  2. 如果发现当前选择无法达到解决问题的目标,就回退到上一个状态,尝试其他的选择。
  3. 不断地重复上述过程,直到找到解决问题的路径,或者遍历完所有可能的选择。

2、一般步骤:

  1. 确定问题的解空间和约束条件。
  2. 从解空间中选择一个可能的选择,进入下一步。
  3. 判断当前选择是否符合约束条件,如果符合,继续深入尝试下一步;如果不符合,回退到上一步。
  4. 重复上述步骤,直到找到解,或者遍历完所有可能的选择。

二、题目带练

1、全排列

题目地址
在这里插入图片描述
分析
看到这道题的描述,不难想到,如果我们要找出所有的排列方式,就要遍历n次数组,每次选择一个不重复元素排列在上次循环选择的元素后面,那这就出现了一个问题怎么对一个数组遍历n次?

显然这是不太可能实现的,因为n是不确定的,但是我们可以换一种思路,通过深度来代表遍历次数,也就是我们常说的回溯算法。

根据题意,我们应当设递归出口为 当前递归的深度 == 数组的长度if(depth == nums.length),同时保存当前的排列方式到集合中。ans.add(new ArrayList<>(path));每次递归的过程中我们需要遍历一次数组for(int i = 0; i < nums.length; i++),判断当前的元素是否被使用过if(used[i]),如果没被使用那么就将其记录下来,并且标记为使用过,继续进入递归path.add(nums[i]); used[i] = true;。当这次递归结束时dfs(nums,depth + 1,used);,撤销当前元素的使用标记,并且移除记录的集合。path.remove(path.size() - 1); used[i] = false;

效果就是调用方法后,先选择元素1path.add(nums[0]); used[0] = true;,再次调用方法记录深度+1dfs(nums,depth + 1,used);,此时发现1已经被选择过了,开始选择2path.add(nums[1]); used[1] = true;,调用递归,深度+1dfs(nums,depth + 1,used);,同理1,2被标记为使用过的元素,继续选择3path.add(nums[2]); used[2] = true;,然后递归结束。这里会退回到深度为2的那次选择,因为2之后还有别的元素可以选择,选择3后发现只有2可以选了,首选项为1的递归结束,依次类推得到所有排列方式。
在这里插入图片描述

代码如下:

class Solution {public List<List<Integer>> ans = new ArrayList<>();public List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {boolean[] used = new boolean[nums.length];dfs(nums,0,used);return ans;}public void dfs(int[] nums,int depth,boolean[] used){if(depth == nums.length){ans.add(new ArrayList<>(path));return;}for(int i = 0; i < nums.length; i++){if(used[i]){continue;}path.add(nums[i]);used[i] = true;dfs(nums,depth + 1,used);path.remove(path.size() - 1);used[i] = false;}}
}

2、组合

题目地址
在这里插入图片描述
分析

这道题与全排列的区别在于,全排列需要全部选择,而这道题不一定要全部选择,并且每个组合只能有一次,所以面对这道题,我们不能按照和之前同样的思路去解,因为无法排除同样组合的组合顺序问题。

那么我们要如何作出改动呢?

其实很简单,我们只需要让每次循环的起始值变为当前的深度即可,同时也不需要判断是否使用过了,因为我们只会向后找,不会从前开始往后找了。

class Solution {List<Integer> temp = new ArrayList<Integer>();List<List<Integer>> ans = new ArrayList<List<Integer>>();public List<List<Integer>> combine(int n, int k) {dfs(1, n, k);return ans;}public void dfs(int depth, int n, int k) {if (temp.size() == k) {ans.add(new ArrayList<Integer>(temp));return;}for(int i = depth;i <= n;i++){temp.add(i);dfs(i + 1, n, k);temp.remove(temp.size() - 1);}}
}

3、子集

题目地址
在这里插入图片描述
分析

大家看这道题可能会发现,是不是和组合有点相似?区别在哪呢,区别在于子集的选择长度不一定是n,而是[0,n]

其实我们只需要每次回溯都记录一次结果就好了。

class Solution {List<Integer> list = new ArrayList<>();List<List<Integer>> result = new ArrayList<>();public List<List<Integer>> subsets(int[] nums) {dfs(0,nums);return result;}public void dfs(int current, int[] nums){result.add(new ArrayList<>(list));if(current == nums.length){return;}for(int i = current; i < nums.length; i++){list.add(nums[i]);dfs(i + 1, nums);list.remove(list.size() - 1);}}
}

三、公式总结

如果认真看完的朋友可以发现,对于这种基础的回溯题目,我们都可以通过循环+回溯来解决问题,只需要根据具体问题来更改我们的循环条件即可。

当然这么做不一定是最好的,还有许多可以优化的地方,只是说大部分情况可以通过这种循环的方式来解决问题。

http://www.lryc.cn/news/139182.html

相关文章:

  • WPF基础入门-Class3-WPF数据模板
  • js将搜索的关键字加颜色
  • Docker安装Oracle数据库打开、链接速度很慢
  • 学生分班查询系统的创建与使用指南
  • 全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!
  • ffmpeg
  • CH03_代码的坏味道(下)
  • journal日志导致服务器磁盘满
  • “Go程序员面试笔试宝典”复习便签
  • 数组的度(指数组里任一元素出现频数的最大值)
  • scala array类型参数
  • 构建 NodeJS 影院预订微服务并使用 docker 部署(03/4)
  • html写一个向flask_socketio发送消息和接收消息并显示在页面上
  • C#使用.Net Core进行跨平台开发
  • Java“牵手”天猫店铺所有商品API接口数据,通过店铺ID获取整店商品详情数据,天猫API申请指南
  • php输入post过滤函数,入库出库,显示
  • matlab-对数据集加噪声并实现tsne可视化
  • 【BASH】回顾与知识点梳理(三十八)
  • Sql注入攻击的三种方式
  • dockerfile部署前端vue打包的dist文件实战
  • [技术杂谈]MobaXterm中文乱码编码问题一种解决方法
  • mac os M1 安装并启动 postgreSQL 的问题
  • 如何使用Wireshark进行网络流量分析?
  • 抖音web主页视频爬虫
  • 常用的jar包【maven坐标格式】
  • 【分布式】VMware FT概要
  • 江西南昌电气机械三维测量仪机械零件3d扫描-CASAIM中科广电
  • MySQL三大日志(binlog、redo log和undo log)详解
  • 七大排序算法详解
  • [docker][WARNING]: Empty continuation line found in: