当前位置: 首页 > news >正文

GEE/PIE遥感大数据处理与应用

随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。

为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)和航天宏图的PIE Engine等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。作为国内最先进的遥感云平台,PIE Engine近年来发展发非常迅速,拥有丰富的国产卫星数据,以及中国区域的其它重要开源数据,在数据安全性和访问便利性方面具有独到的优势。与传统的处理影像工具(例如ENVI)相比,遥感云平台一方面提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。

一、初识GEE和PIE遥感云平台

1. GEE和PIE平台及典型应用案例介绍

2. JavaScript基础,包括变量,运算符,数组,判断及循环语句等

3. 遥感云重要概念与典型数据分析流程

4. 遥感云基本对象及平台上手

· 影像与影像集

· 几何体、要素与要素集

· 日期、字符、数字

· 数组、列表、字典

· 影像/影像集、要素/要素集数据查询、时空过滤、可视化、属性查看等

主要对象最常用API介绍

二、GEE和PIE影像大数据处理基础

1. . 关键知识点

· 影像数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取等

· 影像掩码,裁剪和镶嵌

· 集合对象的循环迭代(map/iterate)

· 集合对象联合(Join)

· 影像面向对象分析

2. 2. 主要功能

· Landsat/Sentinel-2影像批量去云

· Landsat/Sentinel-2传感器归一化、植被指数计算等

时间序列光学影像的平滑与空间插值

三、数据整合Reduce

1. 关键知识点

· 影像与影像集整合,如指定时窗的年度影像合成

· 影像区域统计与领域统计,分类后处理

· 要素集属性列统计

· 栅格与矢量的相互转换

· 分组整合与区域统计

· 影像集、影像和要素集的线性回归分析

2. 主要功能

· 研究区可用Landsat影像的数量和无云观测数量的统计分析

· 中国区域年度NDVI植被数合成及年度最绿的DOY时间查找

· 国家尺度30年尺度的降雨量时空变化趋势分析

四、云端数据可视化

1. 关键知识点

· 要素与要素集属性制图(条形图、直方图、堆积柱形图、散点图等)

· 影像制图(区域统计、分类图、直方图、散点图、线型图,饼图等)

· 影像集制图(样点时间序列图、区域统计时间序列图等)

· 数组与链表制图(散点图、样线图等)

· 图形风格和属性设置

2. 主要功能

· 基于MODIS时间序列影像的不同地表植被物候分析与制图

·基于Hansen产品的年度森林时空变化分析与专题图绘制

五、数据导入导出及资产管理

1. 关键知识点

· 不同矢量数据上传个人资产

· 影像数据上传个人资产、属性设置等

· 影像批量导出(Asset和Driver)

· 矢量数据导出(Asset和Driver)

· 空间统计分析结果导出

2. 主要功能

· PIE平台国产卫星数据下载

· 影像合成批量导出及下载

· 地面样地对应遥感指标数据导出

六、机器学习算法

1. 关键知识点

· 样本抽样(随机抽样、分层随机抽样)

· 监督分类算法(随机森林、CART、贝叶斯、SVM、决策树等)

· 非监督分类算法(wekaKMeans、wekaLVQ等)

· 分类精度评估

2. 主要功能

· 联合光学与雷达时间序列影像的森林动态监测

· 水体自动提取与洪涝监测

七、案例

1. GEE土地利用分类综合案例,实现主要功能串讲,包括地面样本准备、多源遥感影像预处理、算法开发、分类后处理、精度评估和空间统计分析与制图等环节

2. 经典PIE案例代码

· 夜间灯光指数提取

· 长时间尺度植被覆盖度反演

· 水域动态监测

· 农作物种植面积提取

· 荒漠化程度提取

3. 人口密度动态变化分析

GEE与PIE平台切换、代码优化、常见错误与调试总结

阅读全文点击《GEE/PIE遥感大数据处理与应用》

http://www.lryc.cn/news/137941.html

相关文章:

  • ● 647. 回文子串 ● 516.最长回文子序列
  • Mysql group by使用示例
  • 淘宝商品详情采集接口item_get-获得淘宝商品详情(可高并发线程)
  • uniapp写公众号h5开发 附件上传 下载功能
  • 机器学习基础09-审查分类算法(基于印第安糖尿病Pima Indians数据集)
  • C++ sort与优先队列排序的区别
  • 【Rust】Rust学习 第十九章高级特征
  • C++ 纯虚函数和虚函数的区别
  • Go中的有限状态机FSM的详细介绍 _
  • Python入门教程 | Python3 基本数据类型
  • STM32移植u8g2玩转oled 用软件iic实现驱动oled
  • C++ 学习系列 -- string 实现
  • C语言小练习(三)
  • 2023 js逆向爬虫 有道翻译 代码
  • 【物联网无线通信技术】NFC从理论到实践(FM17XX)
  • Python爬虫猿人学逆向系列——第六题
  • idea使用tomcat
  • 搭建Tomcat HTTP服务:在Windows上实现外网远程访问的详细配置与设置教程
  • Java学习笔记——继承(包括this,super的使用总结)
  • Android 获取应用sha1和sha256
  • c# 方法参数修饰符(out、ref、in)的区别
  • shell 编写一个带有进度条的程序安装脚本
  • 服务器数据恢复-AIX PV完整镜像方法以及误删LV的数据恢复方案
  • 首席执行官Adam Selipsky解读“亚马逊云科技的技术产品差异化”
  • C++ Day3
  • OpenEuler 安装mysql
  • [Docker] Windows 下基于WSL2 安装
  • (未完成)【Spring专题】SringAOP底层原理解析——阶段三(AOP)
  • 使用Nodejs创建简单的HTTP服务器,借助内网穿透工具实现公网访问的方法分享
  • 使用 OpenTelemetry 构建可观测性 03 - 导出