当前位置: 首页 > news >正文

Python实现SSA智能麻雀搜索算法优化随机森林分类模型(RandomForestClassifier算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。

在麻雀觅食的过程中,分为发现者(探索者)和加入者(追随者),发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,而加入者则是利用发现者来获取食物。为了获得食物,麻雀通常可以采用发现者和加入者这两种行为策略进行觅食。种群中的个体会监视群体中其它个体的行为,并且该种群中的攻击者会与高摄取量的同伴争夺食物资源,以提高自己的捕食率。此外,当麻雀种群意识到危险时会做出反捕食行为。

本项目通过SSA智能麻雀搜索算法优化随机森林分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示): 

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

 关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

 

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:

 

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

 

关键代码如下:  

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图: 

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析 

 

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

 

6.构建SSA智能麻雀搜索算法优化随机森林分类模型

主要使用SSA智能麻雀搜索算法优化随机森林分类算法,用于目标分类。

6.1 SSA智能麻雀搜索算法寻找最优的参数值   

最优参数:

 6.2 最优参数值构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

 

从上表可以看出,F1分值为0.9143,说明模型效果较好。

关键代码如下: 

7.2 分类报告 

从上图可以看出,分类为0的F1分值为0.93;分类为1的F1分值为0.91。

7.3 混淆矩阵

 

从上图可以看出,实际为0预测不为0的 有6个样本;实际为1预测不为1的 有9个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了SSA智能麻雀搜索算法寻找随机森林算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 定义边界函数
def Bounds(s, Lb, Ub):temp = sfor i in range(len(s)):if temp[i] < Lb[0, i]:  # 小于最小值temp[i] = Lb[0, i]  # 取最小值elif temp[i] > Ub[0, i]:  # 大于最大值temp[i] = Ub[0, i]  # 取最大值# ******************************************************************************# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ# 提取码:thgk# ******************************************************************************#  y变量柱状图
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
# kind='bar' 绘制柱状图
data['y'].value_counts().plot(kind='bar')

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


项目代码咨询、获取,请见下方公众号。

http://www.lryc.cn/news/134680.html

相关文章:

  • web JS高德地图标点、点聚合、自定义图标、自定义窗体信息、换肤等功能实现和高复用性组件封装教程
  • AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback
  • 【Linux】Linux工具篇(yum、vim、gcc/g++、gdb、Makefile、git)
  • 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 5- 完成 Spring 容器对象的自动装配 -@Autowried
  • linux的http服务
  • Restful架构简单了解
  • conda常用命令
  • Linux:shell脚本:基础使用(6)《正则表达式-awk工具》
  • 国际阿里云腾讯云:阿里云服务器怎么打包
  • FPGA中锁存器(latch)、触发器(flip-flop)以及寄存器(register)详解
  • 【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32F407最小系统板使用指南
  • 分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
  • 6.链路追踪-Zipkin
  • 基于ACF,AMDF算法的语音编码matlab仿真
  • python 基础篇 day 1 初识变量和数据类型
  • Window下部署使用Stable Diffusion AI开源项目绘图
  • 【MySQL】好好学习一下InnoDB中的页
  • git开发常用命令
  • WEB APIs day5
  • html动态爱心代码【一】(附源码)
  • 【仿写tomcat】六、解析xml文件配置端口、线程池核心参数
  • Android Studio 接入OpenCV最简单的例子 : 实现灰度图效果
  • (1)、扩展SpringCache一站式解决缓存击穿,穿透,雪崩
  • Rancher使用cert-manager安装报错解决
  • Harvard transformer NLP 模型 openNMT 简介入门
  • 【数据结构OJ题】用栈实现队列
  • 通达信指标公式15:除权除息数据统计分析
  • day-27 代码随想录算法训练营(19)回溯part03
  • CSDN编程题-每日一练(2023-08-22)
  • 使用 KubeBlocks 为 K8s 提供稳如老狗的数据库服务