当前位置: 首页 > news >正文

Window下部署使用Stable Diffusion AI开源项目绘图

Window下部署使用Stable Diffusion AI开源项目绘图

  • 前言
  • 前提条件
  • 相关介绍
  • Stable Diffusion AI绘图
    • 下载项目
    • 环境要求
    • 环境下载
    • 运行项目
    • 打开网址,即可体验
    • 文字生成图像(txt2img)
      • 庐山瀑布
  • 参考

在这里图片描述

  • 本文里面的风景图,均由Stable Diffusion AI绘制生成。
  • Stable Diffusion并不局限于AI绘图,还有风格转换、人像修复、图像融合、图像去噪等功能,感兴趣的小伙伴,可自行探索,科学使用!

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  1. 安装 Python 3.10.6 :https://www.python.org/downloads/release/python-3106/

  2. 安装 git:https://git-scm.com/download/win

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • AIGC(人工智能生成内容)是指由人工智能系统创建或生成的内容。它涉及使用人工智能技术,如机器学习、自然语言处理和计算机视觉,生成各种形式的内容,包括文本、图像、视频、音乐等。
  • 稳定扩散(Stable Diffusion)是一种用于概率建模和图像处理的方法。它基于扩散过程的理论,旨在对图像进行平滑和去噪处理,同时保持重要的图像结构和细节。
    稳定扩散方法通过在图像上应用非线性扩散算子来实现平滑和去噪。与传统的线性扩散方法不同,稳定扩散引入了非线性项,以更好地保留图像的边缘和细节。
    稳定扩散的核心思想是在扩散过程中考虑梯度信息,并根据梯度大小和方向来调整扩散速度。这样可以在平滑图像的同时,有效地抑制边缘的模糊和细节的丢失。
    稳定扩散方法在图像去噪、边缘保持、纹理增强等方面具有广泛应用。它提供了一种平衡平滑和保持图像结构的方法,可以应用于计算机视觉、图像处理和模式识别等领域。

Stable Diffusion AI绘图

下载项目

  • 官方源地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui

在这里插入图片描述
下载完成,解压后,项目目录,如下所示。
在这里插入图片描述

环境要求

GitPython
Pillow
accelerate
basicsr
blendmodes
clean-fid
einops
gfpgan
gradio 3.32.0
inflection
jsonmerge
kornia
lark
numpy
omegaconf
open-clip-torch
piexif
psutil
pytorch_lightning
realesrgan
requests
resize-right
safetensors
scikit-image 0.19
timm
tomesd
torch
torchdiffeq
torchsde
transformers 4.25.1

  • 此开源项目,最难的地方是环境配置,并且,对环境的要求比较高,需要用的GPU(本文用的是RTX 3060),如果,没有具备相关条件,可以使用Kaggle GPU资源免费体验Stable Diffusion开源项目:https://blog.csdn.net/FriendshipTang/article/details/132238734

环境下载

pip install -r requirements.txt
或者
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内使用清华源,下载速度较快

运行项目

进入项目目录,在cmd命令端,运行webui-user.bat

webui-user.bat

第一次运行,此文件还会自动下载一些相关的依赖文件。
在这里插入图片描述
在这里插入图片描述

运行成功后,会出现一个用于本地访问网址:http://127.0.0.1:7860
在这里插入图片描述

打开网址,即可体验

在这里插入图片描述

文字生成图像(txt2img)

庐山瀑布

The Waterfall in Mount Lu Viewed from Afar
Li Bai
The sunlit Censer Peak exhales incenselike cloud;
Like an upended stream the cataract sounds loud.
Its torrent dashes down three thousand feet from high
As if the Silver River fell from the blue sky.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 网站里还有很多功能,感兴趣的小伙伴,可自行探索!
  • 此开源项目,最难的地方是环境配置,并且,对环境的要求比较高,需要用的GPU(本文用的是RTX 3060),如果,没有具备相关条件,可以使用Kaggle GPU资源免费体验Stable Diffusion开源项目:https://blog.csdn.net/FriendshipTang/article/details/132238734

参考

[1] https://github.com/AUTOMATIC1111/stable-diffusion-webui
[2] https://github.com/camenduru/stable-diffusion-webui
[3] https://www.kaggle.com/code/camenduru/stable-diffusion-webui-kaggle

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目
http://www.lryc.cn/news/134663.html

相关文章:

  • 【MySQL】好好学习一下InnoDB中的页
  • git开发常用命令
  • WEB APIs day5
  • html动态爱心代码【一】(附源码)
  • 【仿写tomcat】六、解析xml文件配置端口、线程池核心参数
  • Android Studio 接入OpenCV最简单的例子 : 实现灰度图效果
  • (1)、扩展SpringCache一站式解决缓存击穿,穿透,雪崩
  • Rancher使用cert-manager安装报错解决
  • Harvard transformer NLP 模型 openNMT 简介入门
  • 【数据结构OJ题】用栈实现队列
  • 通达信指标公式15:除权除息数据统计分析
  • day-27 代码随想录算法训练营(19)回溯part03
  • CSDN编程题-每日一练(2023-08-22)
  • 使用 KubeBlocks 为 K8s 提供稳如老狗的数据库服务
  • SFL212B-10-21-15、SFL212B-20-21-40喷嘴挡板伺服阀
  • 阿里云100元预算可选的云服务器配置2核2G3M带宽
  • Linux问题--docker启动mysql时提示3306端口被占用
  • 2023年中秋月饼市场趋势分析(月饼京东销售数据分析)
  • A Survey on Model Compression for Large Language Models
  • 读取/加载 properties/yml 配置文件
  • UG\NX二次开发 创建中心线
  • 用java语言写一个网页爬虫 用于获取图片
  • 三数之和-LeetCode
  • ubuntu 对多CPU统一设置高性能模式
  • 志凌海纳 SmartX 携手灵雀云推出全栈云原生联合解决方案
  • 排名前 6 位的数学编程语言
  • arm:day6
  • MyBatis快速入门以及环境搭建和CRUD的实现
  • 基于Pytorch实现的声纹识别系统
  • Fast DDS (2)