当前位置: 首页 > news >正文

ChatGLM-6B微调记录

目录

  • GLM-130B和ChatGLM-6B
  • ChatGLM-6B直接部署
  • 基于PEFT的LoRA微调ChatGLM-6B

GLM-130B和ChatGLM-6B

对于三类主要预训练框架:

  • autoregressive(无条件生成),GPT的训练目标是从左到右的文本生成
  • autoencoding(语言理解,比如BERT、ALBERT、RoBERTa、DeBERTa),encoder-decoder(有条件生成)。其训练目标是对文本进行随机掩码,然后预测被掩码的词
  • 基于encoder-decoder的T5,编码器中的注意力是双向的,解码器中的注意力是单向的,可同时应⽤于⾃然语⾔理解任务和⽣成任务,但T5为了达到和RoBERTa和DeBERTa相似的性能,往往需要更多的参数量。T5的训练目标是接受一段文本,从左到右生成另一段文本

为了统一,GLM在结构和训练目标上兼容三种预训练模型。在结构上,通过attention mask实现同时存在单向注意力和双向注意力:
fig1
当attention mask是全1矩阵的时候,这时的注意力是双向的,当attention mask是三角矩阵时,比如上图,注意力就变成单向。因此,GLM可以在只使⽤Transformer编码器的情况下,⾃定义attention mask来兼容三种模型结构。具体回顾 LLM中的微调演变与LLM架构类型-LLM的架构分类

训练时,GLM采用自回归空格填充任务,用于兼容三种模型的训练目标,先采样输入文本中部分片段,将其替换为[MASK] token,然后预测[MASK]所对应的文本片段,与掩码语⾔模型不同的是,预测的过程是自回归方式:
fig2

  • 当被mask的片段长度为1,等价于BERT(掩码语言建模),当全部文本都被mask,等价于GPT(无条件语言生成),当将文本1和文本2拼接在一起,然后将文本2整体mask后,等价于T5(条件语言生成)。

GLM有两个交替优化的训练目标:

  • 文档级别的生成:从文档中随机采样一个文本片段进行掩码,片段的长度为文档长度的50%-100%;
  • 句子级别的生成:从文档中随机掩码若干文本片段,每个文本片段必须为完整的句子,被掩码的词数量为整个文档长度的15%;

GLM-130B是拥有1300亿参数的中英双语模型,在96块A100上训练了60天。ChatGLM-6B基于GLM架构,具有62亿参数,无量化的情况下占用显存13G,INT8量化后支持在单张11G显存的2080Ti上推理,INT4量化后只需6G显存进行推理,7G显存做P-Tuning v2微调。ChatGLM-6B以GLM-130B为基座,加入code预训练,并进行SFT和RLHF,支持中文问答。


关于量化
INT8量化是一种将深度学习模型中的权重和激活值从32位浮点数(FP32)减少到8位整数(INT8)的技术,这可以减少计算资源需求,降低能耗,量化通常包括以下步骤:

  • 选择量化范围:确定权重和激活的最小值和最大值;
  • 量化映射:根据范围将32位浮点数映射为8位整数;
  • 反量化:将8位整数转回浮点数用于计算。

ChatGLM-6B直接部署

首先获取项目:

$ git clone https://github.com/THUDM/ChatGLM-6B
$ cd ChatGLM-6B

注意环境配置:torch版本不低于1.10,transformers为4.27.1,下载模型文件:

$ git clone https://huggingface.co/THUDM/chatglm-6b

直接新建my_demo.py:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print("response: ", response)
print("history: ", history)
response, history = model.chat(tokenizer, "如何提高弹跳", history=history)
print("response: ", response)
print("history: ", history)

生成的答案为(同时打印了历史信息):
fig3
也可以交互式问答,注意修改cli_demo.py中的模型路径:

$ python cli_demo.py

程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear 可以清空对话历史(history),输入 stop 终止程序。

也可以利用gradio可视化界面,注意修改web_demo.py中的模型路径:

from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2htmltokenizer = AutoTokenizer.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()

运行web_demo.py即可:
fig4

默认情况下,模型以 FP16 精度加载,运行模型需要大概 13GB 显存。

基于PEFT的LoRA微调ChatGLM-6B

官方基于P-Tuning v2微调,此处我们使用非官方项目ChatGLM-Tuning基于LoRA微调:

$ git clone https://github.com/mymusise/ChatGLM-Tuning
$ cd ChatGLM-Tuning

首先新建data_process.sh进行数据处理:

python cover_alpaca2jsonl.py \--data_path data/alpaca_data.json \--save_path data/alpaca_data.jsonl \

alpaca_data.json包含用于微调Alpaca模型的52k指令数据(回顾 LLaMA-7B微调记录)。data_process.sh用于将这52k数据处理为ChatGLM-6B的格式。

对于alpaca_data.json,包含 instruction,input,output,格式为:

[{"instruction": "Give three tips for staying healthy.","input": "","output": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule."},...{"instruction": "Edit the following sentence (highlight changes in bold)","input": "We use computers for gaming and entertainment","output": "We use computers for gaming, entertainment, and work."}
]

处理后的alpaca_data.jsonl包含context,target,格式为:

{"context": "Instruction: Give three tips for staying healthy.\nAnswer: ", "target": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule."}
{"context": "Instruction: Edit the following sentence (highlight changes in bold)\nInput: We use computers for gaming and entertainment\nAnswer: ", "target": "We use computers for gaming, entertainment, and work."}

可以看到这个格式正好符合前面所提到的GLM的训练目标。

下一步,新建token.sh将数据token化,首先修改tokenize_dataset_rows.py中, 函数read_jsonl内的模型路径:

model_name = "/data/temp/my-alpaca-lora/chatglm-6b"

token.sh为:

python tokenize_dataset_rows.py \--jsonl_path data/alpaca_data.jsonl \--save_path data/alpaca \--max_seq_length 200 \--skip_overlength False \

然后新建finetune.sh执行微调,注意修改finetune.py中的模型路径:

tokenizer = AutoTokenizer.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", trust_remote_code=True)def main():...# init modelmodel = AutoModel.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", load_in_8bit=True, trust_remote_code=True, device_map="auto")

finetune.sh为:

python finetune.py \--dataset_path data/alpaca \--lora_rank 8 \--per_device_train_batch_size 6 \--gradient_accumulation_steps 1 \--max_steps 52000 \--save_steps 1000 \--save_total_limit 2 \--learning_rate 1e-4 \--fp16 \--remove_unused_columns false \--logging_steps 50 \--output_dir output \

额外说明,在finetune.py,通过get_peft_model将模型封装为带有LoRA分支的模型:

model = AutoModel.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", load_in_8bit=True, trust_remote_code=True, device_map="auto")
...
# setup peft
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,inference_mode=False,r=finetune_args.lora_rank,lora_alpha=32,lora_dropout=0.1)
model = get_peft_model(model, peft_config)

其余训练内容都可以不变,这样就能进行LoRA优化。

微调后,通过以下方式加载模型:

from peft import PeftModelmodel = AutoModel.from_pretrained("/data/temp/my-alpaca-lora/chatglm-6b", trust_remote_code=True, load_in_8bit=True, device_map='auto')model = PeftModel.from_pretrained(model, "./output/")
http://www.lryc.cn/news/134152.html

相关文章:

  • Linux Kernel 4.12 或将新增优化分析工具
  • 【30天熟悉Go语言】10 Go异常处理机制
  • 飞机打方块(四)游戏结束
  • 保研之旅1:西北工业大学电子信息学院夏令营
  • [WMCTF 2023] crypto
  • 图像分割unet系列------TransUnet详解
  • ASCII码-shellcode的技巧
  • spring cloud 之 dubbo nacos整合
  • MySQL如何进行表之间的关联更新
  • Docker创建 LNMP 服务+Wordpress 网站平台
  • node没有自动安装npm时,如何手动安装 npm
  • C# 使用递归方法实现汉诺塔步数计算
  • 窗口函数大揭秘!轻松计算数据累计占比,玩转数据分析的绝佳利器
  • 健康检测智能睡眠床垫方案
  • 计网第三章(数据链路层)(五)
  • 嵌入式系统中常见内存的划分方法
  • 深入理解与实现:常见搜索算法的Java示例
  • PHP自己的框架实现操作成功失败跳转(完善篇四)
  • 【汇编语言】CS、IP寄存器
  • Nvidia Jetson 编解码开发(3)解决H265解码报错“PPS id out of range”
  • Angular中如何获取URL参数?
  • uniapp编写微信小程序和H5遇到的坑总结
  • 课程表-广度优先和图
  • 机器学习|决策树:数学原理及代码解析
  • 1.0的星火2.0必将燎原——图文声影PPT全测试
  • [MySQL]主从服务器布置
  • 图像处理算法大全(基于libyuv或IPP)----NV12转成I420,RGB24,ARGB集合
  • 机器人操作系统:ROS2 仿真入门
  • 面试题:线程池的底层工作原理
  • Excel/PowerPoint条形图改变顺序