当前位置: 首页 > news >正文

[PyTorch][chapter 52][迁移学习]

前言:

     迁移学习(Transfer Learning)是一种机器学习方法,它通过将一个领域中的知识和经验迁移到另一个相关领域中,来加速和改进新领域的学习和解决问题的能力。

      这里面主要结合前面ResNet18 例子,详细讲解一下迁移学习的流程


一  简介

    

迁移学习可以通过以下几种方式实现:

1.1 基于预训练模型的迁移:

      将已经在大规模数据集上预训练好的模型(如BERT、GPT等)作为一个通用的特征提取器,然后在新领域的任务上进行微调。

1.2  网络结构迁移:

将在一个领域中训练好的模型的网络结构应用到另一个领域中,并在此基础上进行微调。

1.3  特征迁移:

     将在一个领域中训练好的某些特征应用到另一个领域中,并在此基础上进行微调。

     word2vec

1.4 参数迁移:

       将在一个领域中训练好的模型的参数应用到另一个领域中,并在此基础上进行微调。

本文主要例子用的是 参数迁移


二  Flatten

    作用:

     输入的向量x [batch, c, w, h]=>[batch, c*w*h]

# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 15:11:35 2023@author: chengxf2
"""import torch
from torch import optim,nnclass Flatten(nn.Module):def __init__(self):super(Flatten,self).__init__()def forward(self, x):a = torch.tensor(x.shape[1:])#dim 中 input 张量的每一行的乘积。shape = torch.prod(a).item()#print("\n ---new shape--- ",shape)return x.view(-1,shape)

三 迁移学习

   torchvision 已经提供好了一些分类器 resnet18,resnet152, 利用其训练好的参数,把最后的分类类型更改掉。

   from torchvision.models import resnet152
  from torchvision.models import resnet18

   注意:

          现有分类器分类的类型 > = 新分类器类型,再做transfer.

才能取得好的效果.

         

分类器分类类型
已有分类器[猫,狗,鸡,鸭】
新分类器[猫,狗]

     

   

 

# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 14:56:35 2023@author: chengxf2
"""# -*- coding: utf-8 -*-
"""
Created on Tue Aug 15 15:38:18 2023@author: chengxf2
"""import torch
from torch import optim,nn
import visdom
from torch.utils.data import DataLoader
from PokeDataset import Pokemon
from torchvision.models import resnet152
from torchvision.models import resnet18from util import FlattenbatchNum = 32
lr = 1e-3
epochs = 20
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(1234)root ='pokemon'
resize =224csvfile ='data.csv'
train_db = Pokemon(root, resize, 'train',csvfile)
val_db = Pokemon(root, resize, 'val',csvfile)
test_db = Pokemon(root, resize, 'test',csvfile)train_loader = DataLoader(train_db, batch_size =batchNum,shuffle= True,num_workers=4)
val_loader = DataLoader(val_db, batch_size =batchNum,shuffle= True,num_workers=2)
test_loader = DataLoader(test_db, batch_size =batchNum,shuffle= True,num_workers=2)
viz = visdom.Visdom()def evalute(model, loader):total =len(loader.dataset)correct =0for x,y in loader:x = x.to(device)y = y.to(device)with torch.no_grad():logits = model(x)pred = logits.argmax(dim=1)correct += torch.eq(pred, y).sum().float().item()acc = correct/totalreturn acc   def main():trained_model = resnet152(pretrained=True)model = nn.Sequential(*list(trained_model.children())[:-1],Flatten(),nn.Linear(in_features=2048, out_features=5))optimizer = optim.Adam(model.parameters(),lr =lr) criteon = nn.CrossEntropyLoss()best_epoch=0,best_acc=0viz.line([0],[-1],win='train_loss',opts =dict(title='train loss'))viz.line([0],[-1],win='val_loss',  opts =dict(title='val_acc'))global_step =0for epoch in range(epochs):print("\n --main---: ",epoch)for step, (x,y) in enumerate(train_loader):#x:[b,3,224,224] y:[b]x = x.to(device)y = y.to(device)#print("\n --x---: ",x.shape)logits =model(x)loss = criteon(logits, y)#print("\n --loss---: ",loss.shape)optimizer.zero_grad()loss.backward()optimizer.step()viz.line(Y=[loss.item()],X=[global_step],win='train_loss',update='append')global_step +=1if epoch %2 ==0:val_acc = evalute(model, val_loader)if val_acc>best_acc:best_acc = val_accbest_epoch =epochtorch.save(model.state_dict(),'best.mdl')print("\n val_acc ",val_acc)viz.line([val_acc],[global_step],win='val_loss',update='append')print('\n best acc',best_acc, "best_epoch: ",best_epoch)model.load_state_dict(torch.load('best.mdl'))print('loaded from ckpt')test_acc = evalute(model, test_loader)print('\n test acc',test_acc)if __name__ == "__main__":main()


参考:
https://blog.csdn.net/qq_44089890/article/details/130460700

课时107 迁移学习实战_哔哩哔哩_bilibili

http://www.lryc.cn/news/131309.html

相关文章:

  • Ceph如何操作底层对象数据
  • sklearn机器学习库(二)sklearn中的随机森林
  • FlutterBoost 实现Flutter页面内嵌iOS view
  • 走嵌入式还是纯软件?学长告诉你怎么选
  • 【云计算原理及实战】初识云计算
  • Open3D (C++) 基于拟合高差的点云地面点提取
  • 认识Transformer:入门知识
  • 《TCP IP网络编程》第二十四章
  • 【AI】文心一言的使用
  • CSAPP Lab2:Bomb Lab
  • Java中使用流将两个集合根据某个字段进行过滤去重?
  • 自动驾驶HMI产品技术方案
  • Git判断本地是否最新
  • Spring 整合RabbitMQ,笔记整理
  • Lua 语言笔记(一)
  • 【Redis】什么是缓存穿透,如何预防缓存穿透?
  • LeetCode128.最长连续序列
  • Datawhale Django入门组队学习Task02
  • PCTA 认证考试高分通过经验分享
  • [Python]pytorch与C交互
  • C语言,静态变量static基础及使用实列
  • 2023.8.19-2023.8.XX 周报【人脸3D+虚拟服装方向基础调研-Cycle Diffusion\Diffusion-GAN\】更新中
  • 微表情识别(Python编程,cnn模型)
  • More Effective C++学习笔记(2)
  • 零售行业供应链管理核心KPI指标(三)
  • 广州华锐互动:奶牛难产原因及救治VR仿真实训系统
  • 神经网络基础-神经网络补充概念-62-池化层
  • 第8章:集成学习
  • 设计HTML5列表和超链接
  • React Native 环境搭建