当前位置: 首页 > news >正文

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SS-KELM-Adaboost多变量回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,SSA-KELM-AdaboostNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

SS-KELM-Adaboost是一种将SSA-KELM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。SSA-KELM-AdaBoost算法的基本思想是将SSA-KELM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SSA-ELM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/127265.html

相关文章:

  • 《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器
  • IDEA启动报错【java.sql.SQLSyntaxErrorException: ORA-00904: “P“.“PRJ_NO“: 标识符无效】
  • Nginx详解
  • 摸清一下mysql授权语句的实际执行关系
  • sCrypt于8月12日在上海亮相BSV数字未来论坛
  • Hbase的列式存储到底是什么意思?一篇文章让你彻底明白
  • 机器学习|Softmax 回归的数学理解及代码解析
  • EmbedPress Pro 在WordPress网站中嵌入任何内容
  • 【C++学习手札】一文带你初识C++继承
  • 【ubuntu18.04】01-network-manager-all.yaml和interfaces和resolv.conf各有什么区别和联系
  • 24近3年内蒙古大学自动化考研院校分析
  • 大语言模型(LLM)与 Jupyter 连接起来了
  • ChatGLM2-6B在Windows下的微调
  • 聊聊火车的发展
  • IDEA使用@Autowired为什么会警告?
  • npm如何设置淘宝的镜像源模式
  • 浅谈Redis的maxmemory设置以及淘汰策略
  • 考虑分布式电源的配电网无功优化问题研究(Matlab代码实现)
  • Cpp异常概述
  • 山东布谷科技直播软件源码Nginx服务器横向扩展:搭建更稳定的平台服务
  • SystemVerilog之接口详解
  • RabbitMq-1基础概念
  • 深度学习1:通过模型评价指标优化训练
  • excel隔行取数求和/均值
  • 批量记录收支明细,轻松通过收支占比图表轻松分析支出项目占比!
  • pdf怎么压缩?一分钟学会文件压缩方法
  • 信息安全:防火墙技术原理与应用.
  • PG-DBA培训14:PostgreSQL数据库升级与迁移
  • selenium语法进阶+常用API
  • iOS UIAlertController控件