当前位置: 首页 > news >正文

Python 处理 Excel 表格的 14 个常用操作

目录

1. 安装依赖库

2. 导入库

3. 读取Excel文件

4. 写入Excel文件

5. 创建工作表

6. 访问工作表

7. 读取单元格数据

8. 写入单元格数据

9. 获取行数和列数

10. 过滤数据

11. 排序数据

12. 添加新行

13. 删除行或列

14. 计算汇总统计

总结


无论是数据分析师、财务专员还是研究人员,Excel都是日常工作中必不可少的工具之一。而借助Python的强大功能,能够极大地提高Excel数据处理的效率和灵活性。接下来,让我们一起探索这些常用的Excel操作,为工作流程注入更多的便利和效率吧!

 

1. 安装依赖库

在命令行中使用`pip`命令安装`pandas`和`openpyxl`库,这两个库分别用于处理Excel和读/写Excel文件。


   pip install pandas openpyxl

2. 导入库

在Python脚本中导入`pandas`和`openpyxl`库。

import pandas as pdfrom openpyxl import Workbook, load_workbook

3. 读取Excel文件

使用`read_excel()`函数从Excel文件中读取数据,该函数返回一个DataFrame对象,其中包含了Excel文件中的数据。


   data = pd.read_excel('filename.xlsx')

   注意,`filename.xlsx`是Excel文件的名称。

4. 写入Excel文件

使用`to_excel()`函数将数据写入Excel文件,该函数将DataFrame对象中的数据写入指定的Excel文件。


   data.to_excel('new_filename.xlsx', index=False)

   `index=False`表示不包含索引列。

5. 创建工作表

使用`create_sheet()`函数创建一个新的工作表。

   workbook = Workbook()worksheet = workbook.create_sheet('Sheet1')

   在这个例子中,我们创建了一个名为'Sheet1'的新工作表。

6. 访问工作表

使用`active`属性或`get_sheet_by_name()`函数访问现有工作表。

 

 worksheet = workbook.active# 或worksheet = workbook.get_sheet_by_name('Sheet1')

   `active`属性访问活动的工作表,而`get_sheet_by_name()`函数访问具有指定名称的工作表。

7. 读取单元格数据

使用`cell()`方法获取特定单元格的值,需要提供行号和列号。


   cell_value = worksheet.cell(row=1, column=1).value

   这个例子中,我们读取了第一行第一列的单元格数据。

8. 写入单元格数据

使用`cell()`方法将值写入特定的单元格,同样需要提供行号和列号。

   
   worksheet.cell(row=1, column=1, value='Hello')

   这个例子中,在第一行第一列的单元格写入了字符串'Hello'。

9. 获取行数和列数

使用`shape`属性获取数据表的行数和列数。

 num_rows = data.shape[0]num_cols = data.shape[1]

   `shape`属性返回一个包含行数和列数的元组。

10. 过滤数据

使用条件筛选语句过滤数据,例如,根据某一列的值大于特定值来过滤数据。


    filtered_data = data[data['Column'] > 10]

    这个例子中,我们过滤了具有'Column'列大于10的数据。

11. 排序数据

使用`sort_values()`函数按照指定列对数据进行排序。


    sorted_data = data.sort_values(by='Column')

    这个例子中,我们按照'Column'列对数据进行升序排序。

12. 添加新行

使用`append()`函数将新行数据添加到DataFrame对象中。
   

new_data = pd.DataFrame({'A': [1], 'B': [2], 'C': [3]})data = data.append(new_data, ignore_index=True)

    这个例子中,我们添加了一个包含'A'、'B'和'C'列的新行数据。

13. 删除行或列

使用`drop()`函数删除特定的行或列。

 data = data.drop(index=0) # 删除第一行data = data.drop(columns=['Column1', 'Column2']) # 删除指定列

    这个例子中,我们删除了第一行和名为'Column1'和'Column2'的列。

14. 计算汇总统计

使用`describe()`函数计算数据的基本统计信息,例如,均值、标准差等。


    summary_stats = data.describe()

    这个例子中,我们计算了数据的基本统计信息。

这些是使用Python处理Excel时常用的操作。根据具体需求,您可以选择其中一个或多个操作来处理和操作Excel文件。希望对您有所帮助!

总结

从读取和写入Excel文件、创建和访问工作表,到单元格数据的读取和写入,再到数据的过滤、排序和汇总统计,这些操作涵盖了数据处理过程中的关键步骤。使用Python处理Excel,不仅能够提高工作效率,还能为数据处理提供更多的灵活性和定制化选项。

同时要注意的是,这只是Excel处理中的冰山一角,Python在处理Excel方面还有更多强大的功能和库可供探索,例如xlrd、xlwt、xlsxwriter等。在工作中如果能够根据实际需求灵活运用这些技巧和工具,那么将大大提升数据处理的效率和质量。

http://www.lryc.cn/news/126840.html

相关文章:

  • PyQt有哪些主要组件?
  • 力推C语言必会题目终章(完结篇)
  • CS5263替代停产IT6561连接DP转HDMI音视频转换器ASL 集睿致远CS5263设计电路原理图
  • 数据分析 | 随机森林如何确定参数空间的搜索范围
  • 5G+AI数字化智能工厂建设解决方案PPT
  • Windows配置编译ffmpeg +音视频地址
  • C语言 常用工具型API --------system()
  • 车规级半导体分类(汽车芯片介绍)
  • opencv图像轮廓检测
  • 诚迈科技荣膺小米“最佳供应商奖”
  • 分布式 - 消息队列Kafka:Kafka 消费者的消费位移
  • H3C QoS打标签和限速配置案例
  • 带curl的docker镜像image
  • Hadoop数据迁移distcp
  • QT-Mysql数据库图形化接口
  • LeetCode150道面试经典题-- 合并两个有序链表(简单)
  • GitHub 如何部署写好的H5静态页面
  • SharkTeam:Worldcoin运营数据及业务安全分析
  • C语言编程练习
  • vue入门(增查改!)
  • 移动端身份证识别技术的应用,告别手动录入证件信息
  • 网络通信原理TCP字段解析(第四十七课)
  • uniapp微信小程序消息订阅快速上手
  • MySQL 根据多字段查询重复数据
  • Markdown编辑器 Mac版Typora功能介绍
  • el-form自定义校验规则
  • xml对象与字符串互换
  • 单例模式和多例模式和工厂模式
  • 【网络架构】华为hw交换机网络高可用网络架构拓扑图以及配置
  • 信也科技一面凉经