当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-33-偏差与方差

概念

偏差(Bias):
偏差是模型预测值与实际值之间的差距,它反映了模型对训练数据的拟合能力。高偏差意味着模型无法很好地拟合训练数据,通常会导致欠拟合。欠拟合是指模型过于简单,不能捕捉数据中的复杂模式,导致在训练集和测试集上都表现不佳。

方差(Variance):
方差是模型在不同训练数据集上预测值的变化程度,它反映了模型对训练数据的敏感性。高方差意味着模型过于复杂,对训练数据的小变化非常敏感,通常会导致过拟合。过拟合是指模型在训练集上表现很好,但在未见过的测试数据上表现不佳。

权衡

偏差-方差权衡(Bias-Variance Trade-off):
在实际机器学习中,我们通常希望找到适当的模型复杂度,以平衡偏差和方差之间的关系,从而实现良好的泛化能力。一个理想的模型应该具有适当的复杂度,能够在训练数据上进行合适的拟合,同时又不会过于敏感,可以较好地适应未见过的数据。

解决方法

解决偏差和方差的方法包括:

减小偏差:增加模型的复杂度,使用更多的特征或更深的网络等,以提高模型的表达能力。
减小方差:使用正则化方法,如L1/L2正则化、Dropout等,以减少模型对训练数据的过度拟合。
总结:

偏差反映了模型对训练数据的拟合能力,高偏差通常导致欠拟合。
方差反映了模型对不同训练数据的变化敏感性,高方差通常导致过拟合。
偏差和方差之间存在权衡关系,需要找到适当的模型复杂度来实现良好的泛化能力。

代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 1)
y = 2 * X + 1 + np.random.randn(100, 1) * 0.2# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 创建多项式特征
poly = PolynomialFeatures(degree=10)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)# 使用不同复杂度的模型进行拟合
model_underfit = LinearRegression()
model_properfit = LinearRegression()
model_overfit = LinearRegression()model_underfit.fit(X_train, y_train)
model_properfit.fit(X_train_poly, y_train)
model_overfit.fit(X_train_poly, y_train)# 绘制拟合结果
plt.figure(figsize=(12, 6))plt.subplot(1, 3, 1)
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.plot(X_train, model_underfit.predict(X_train), color='red', label='Underfitting')
plt.legend()
plt.title('Underfitting')plt.subplot(1, 3, 2)
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.plot(X_train, model_properfit.predict(X_train_poly), color='red', label='Properfitting')
plt.legend()
plt.title('Properfitting')plt.subplot(1, 3, 3)
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.plot(X_train, model_overfit.predict(X_train_poly), color='red', label='Overfitting')
plt.legend()
plt.title('Overfitting')plt.tight_layout()
plt.show()# 计算测试集上的均方误差
y_pred_underfit = model_underfit.predict(X_test)
y_pred_properfit = model_properfit.predict(X_test_poly)
y_pred_overfit = model_overfit.predict(X_test_poly)mse_underfit = mean_squared_error(y_test, y_pred_underfit)
mse_properfit = mean_squared_error(y_test, y_pred_properfit)
mse_overfit = mean_squared_error(y_test, y_pred_overfit)print("MSE Underfit:", mse_underfit)
print("MSE Properfit:", mse_properfit)
print("MSE Overfit:", mse_overfit)

在这个示例中,我们生成了一个随机的多项式回归问题,并使用不同复杂度的线性回归模型进行拟合。通过绘制拟合结果和计算测试集上的均方误差,我们可以看到:

Underfitting(欠拟合):模型过于简单,无法捕捉数据中的复杂模式,导致在训练集和测试集上都表现不佳。

Properfitting(适当拟合):使用多项式特征的线性回归模型可以适当地拟合数据,既不过于简单也不过于复杂。

Overfitting(过拟合):模型过于复杂,对训练数据的小变化非常敏感,导致在训练集上表现良好,但在测试集上表现不佳。

通过调整模型的复杂度,我们可以在适当的范围内平衡偏差和方差,从而实现更好的泛化能力。

http://www.lryc.cn/news/126548.html

相关文章:

  • 单片机第一季:零基础13——AD和DA转换
  • 小区外卖跑腿,解决最后100米配送难题
  • ZooKeeper的应用场景(命名服务、分布式协调通知)
  • 网络套接字
  • 对话 4EVERLAND:Web3 是云计算的新基建吗?
  • iOS申请证书(.p12)和描述文件(.mobileprovision)
  • Java:PO、VO、BO、DO、DAO、DTO、POJO
  • c语言每日一练(8)
  • 周期 角频率 频率 振幅 初相角
  • 根据一棵树的两种遍历构造二叉树
  • stack 、 queue的语法使用及底层实现以及deque的介绍【C++】
  • 没学C++,如何从C语言丝滑过度到python【python基础万字详解】
  • haproxy负载均衡
  • 【数据结构】顺序队列模拟实现
  • TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka
  • Spring对象装配
  • bigemap如何添加mapbox地图?
  • python爬虫6:lxml库
  • Linux查找命令
  • 在 IntelliJ IDEA 中使用 Docker 开发指南
  • 【并发编程】自研数据同步工具的优化:创建线程池多线程异步去分页调用其他服务接口获取海量数据
  • python函数、运算符等简单介绍3(无顺序)
  • TCP服务器(套接字通信)
  • 【智慧工地源码】:人工智能、BIM技术、机器学习在智慧工地的应用
  • 使用python读Excel文件并写入另一个xls模版
  • 债务人去世,债权人要求其妻女承担还款责任,法院支持吗
  • arcgis pro3.0-3.0.1-3.0.2安装教程大全及安装包下载
  • @RequestHeader使用
  • LabVIEW开发图像采集和基于颜色的隔离
  • 站长公益主机,免费主机➕免费域名➕博客申请➕论坛申请