当前位置: 首页 > news >正文

OpenCV图像处理——轮廓检测

目录

  • 图像的轮廓
    • 查找轮廓
    • 绘制轮廓
  • 轮廓的特征
    • 轮廓面积
    • 轮廓周长
    • 轮廓近似
    • 凸包
    • 边界矩形
    • 最小外接圆
    • 椭圆拟合
    • 直线拟合
  • 图像的矩特征
    • 矩的概念
    • 图像中的矩特征

图像的轮廓

在这里插入图片描述

查找轮廓

binary,contours,hierarchy=cv.findContours(img,mode,method)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

绘制轮廓

cv.drawContours(img,coutours,index,color,width)

在这里插入图片描述

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimg = cv2.imread('./汪学长的随堂资料/4/图像操作/contours.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny=cv.Canny(img_gray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
img=cv.drawContours(img,contours,-1,(0,0,255),2)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

轮廓的特征

在这里插入图片描述

轮廓面积

area=cv.contourArea(cnt)

轮廓周长

perimeter=cv.arcLength(cnt,isclosed)

在这里插入图片描述

轮廓近似

在这里插入图片描述

approx=cv.approxPolyDP(cnt,epsilon,isclosed)

在这里插入图片描述

img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours2.png')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt=contours[0]
area=cv.contourArea(cnt)
length=cv.arcLength(cnt,True)
esplion=0.1*length
approx=cv.approxPolyDP(cnt,esplion,True)
img=cv.polylines(img,[approx],True,(0,0,255),2)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

凸包

在这里插入图片描述

hull=cv.convexHull(points,clockwise,returnPoints)

在这里插入图片描述
在这里插入图片描述

img=cv.imread('./image/star 2.jpeg')
img1=img.copy()
imggray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
canny=cv.canny(imggray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
hulls=[]
for cnt in contours:hull=cv.convexHull(cnt)hulls.append(hull)
img1=cv.drawContours(img1,hulls,-1,(0,255,0),2)
plt.imshow(img1[:,:,::-1])

在这里插入图片描述

边界矩形

在这里插入图片描述
在这里插入图片描述

img=cv.imread('./image/arrows,jpg')
img_gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(img_gray,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
x,y,w,h=cv.boundingRect(cnt)
imgRect=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3)
plt.imshow(imgRect[:,:,::-1])

在这里插入图片描述

s=cv.minAreaRect(cnt)
a=cv.boxPoints(s)
a=np.int0(a)
cv.polylines(imgRect,[a],True,(0,0,255),3)
plt.imshow(imgRect[:,:,::-1])

在这里插入图片描述

最小外接圆

在这里插入图片描述

(x,y),r=cv.minEnclosingCircle(cnt)
center=(int(x),int(y))
r=int(r)
imgcircle=cv.circle(img,center,r,(0,255,0),3)
plt.imshow(imgcircle[:,:,::-1])

在这里插入图片描述

椭圆拟合

在这里插入图片描述

ellipse=cv.fitEllipse(cnt)
imgellipse=cv.ellipse(img,ellipse,(0,255,255,3))
plt.imshow(imgellipse[:,:,::-1])

在这里插入图片描述

直线拟合

在这里插入图片描述

output=cv.fitLine(points,distType,param,aeps)

在这里插入图片描述

[vx,vy,x,y]=cv.fitLine(cnt,cv.DIST_L2,0,0.01,0.01)
rows,cols=img.shape[:2]
lefty=int((-x*vy/vx)+y)
righty=int(((cols-x)*vy/vx)+y)
imgline=cv.line(img,(0,lefty),(cols-1,righty),(0,0,255),3)
plt.imshow(imgline[:,:,::-1])

在这里插入图片描述

图像的矩特征

在这里插入图片描述

矩的概念

在这里插入图片描述

图像中的矩特征

在这里插入图片描述
在这里插入图片描述

moments(array,binaryImage=False)

在这里插入图片描述

img=cv.imread('./image/arrows.jpg',0)
imgmn=cv.moments(img)
imghu=cv.HuMoments(imgmn)
ret,thresh=cv.threshold(img,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
mn=cv.moments(cnt)
hu=cv.HuMoments(mn)
http://www.lryc.cn/news/125098.html

相关文章:

  • 【论文阅读】基于深度学习的时序预测——Non-stationary Transformers
  • 开发者如何使用讯飞星火认知大模型API?
  • linux 系统中vi 编辑器和库的制作和使用
  • 麒麟arm架构 编译安装qt5.14.2
  • 【springmvc系】利用RequestBodyAdviceAdapter做接口鉴权
  • ROS学习笔记(三)---好用的终端Terminator
  • NFT Insider#102:The Sandbox重新上线LAND桥接服务,YGG加入Base生态
  • Webpack 的 sass-loader 在生产模式下最小化 CSS 问题
  • pytest自动化测试框架tep环境变量、fixtures、用例三者之间的关系
  • vue自定义穿梭框支持远程滚动加载
  • TCP 协议十大相关特性总结
  • 文档控件DevExpress Office File API v23.1新版亮点 - 支持.NET MAUI
  • 分割字符串的最大得分
  • ASR 语音识别接口封装和分析
  • C 语言的 ctype.h 头文件
  • Linux系统编程:采用管道的方式实现进程间通信
  • 网络安全面试题
  • 如何成为游戏主程
  • SSM整合(XML方式)
  • 学习Vue:列表渲染(v-for)
  • 使用巴特沃兹滤波器的1D零相位频率滤波研究(Matlab代码实现)
  • ubuntu18.04安装cuda
  • 【MFC】09.MFC视图-笔记
  • 【字节跳动青训营】后端笔记整理-2 | Go实践记录:猜谜游戏,在线词典,Socks5代理服务器
  • GPT的第一个创作
  • Spring Boot 获取前端参数
  • java应用运行在docker,并且其他组件也在docker
  • Java真实面试题,offer已到手
  • 在序列化、反序列化下如何保持单例(Singleton)模式
  • 【数据结构】二叉树篇|超清晰图解和详解:二叉树的最近公共祖先