当前位置: 首页 > news >正文

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现PSO-LSSVM-Adaboost多变量回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,PSO-LSSVM-AdaboostNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

PSO-LSSVM-Adaboost是一种将PSO-LSSVM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。PSO-LSSVM-AdaBoost算法的基本思想是将PSO-LSSVM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个PSO-LSSVM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/122179.html

相关文章:

  • Mysql 和Oracle的区别
  • 在收藏夹里“积灰”的好东西——“收藏从未停止,行动从未开始”
  • 【算法|数组】双指针
  • asp.net core6 webapi 使用反射批量注入接口层和实现接口层的接口的类到ioc中
  • 【2023】字节跳动 10 日心动计划——第九关
  • 小龟带你敲排序之冒泡排序
  • Nacos AP架构集群搭建(Windows)
  • nodejs+vue+elementui,图书评论管理系统_g9e3a
  • 基于TorchViz详解计算图(附代码)
  • 解决GitHub的速度很慢的几种方式
  • 设计模式再探——策略模式
  • 基于Googlenet深度学习网络的人员行为动作识别matlab仿真
  • 存储过程的学习
  • zookeeperAPI操作与写数据原理
  • 防火墙对双通道协议的处理
  • vscode搭建c语言环境问题
  • 全网最全的接口自动化测试教程
  • 数据结构----结构--线性结构--链式存储--链表
  • 【5G 核心网】5G 多PDU会话锚点技术介绍
  • K8s环境下监控告警平台搭建及配置
  • 微信小程序在使用vant组件库时构建npm报错
  • Django实现音乐网站 ⑽
  • SpringMVC的架构有什么优势?——异常处理与文件上传(五)
  • 【java面向对象中static关键字】
  • 系统学习Linux-Redis集群
  • 【每日随笔】帝王心术 ② ( 如何培养下一代 | 重点培养孩子某一项特长 | 价值观培养 | 独立思考 | 人性和谋略教育 | 资源传承 | 人生指引 )
  • Git简介
  • STM32入门学习之定时器输入捕获
  • 贪心算法:基础入门篇
  • 【Windows10下启动RocketMQ报错:找不到或无法加载主类 Files\Java\jdk1.8.0_301\lib\dt.jar】解决方法