当前位置: 首页 > news >正文

215. 数组中的第K个最大元素(快排+大根堆+小根堆)

题目链接:力扣

解题思路:

方法一:基于快速排序

因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。

当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程中,确定元素的最终位置为k-1(索引从0开始),那么,该元素就是第k大的元素

具体思想下:

  1. 利用快排,对数组num[left,...,right]进行降序排序,在一趟排序过程中,可以确定一个元素的最终位置p,将数组划分为三部分,num[left,...,p-1],nums[p],nums[p+1,right],并且满足
    1. num[left,...,p-1] >= nums[p]
    2. num[p+1,right] <=nums[p]
    3. 即p位置以前的元素是数组中比p位置元素大的元素(此时p位置以前的元素不一定有序,但是肯定都大于等于p位置的元素),而num[p]是第p+1大的元素
  2. 因为需要找到的是第k大的元素:
    1. 如果k < p,那么第k大的元素肯定在num[left,...,p-1]内,这个时候只需要对右半部分区间进行快排
    2. 如果k > p,那么第k大的元素肯定在nums[p+1,right]区间内,这个时候只需要对左半部分区间进行快排
    3. 如果 p= k-1,那么nums[p]就是第k大的元素
  3. 注意这种方式并不要求最终数组中的元素有序,每次只会对左半部分或者右半部分进行快排,减少了一半的快排调用

AC代码:

class Solution {public static int findKthLargest(int[] nums, int k) {return quickSortFindK(nums, 0, nums.length - 1, k);}public static int quickSortFindK(int[] nums, int left, int right, int k) {//选取枢轴元素int pivot = nums[left];int low = left;int high = right;while (low < high) {while (low < high && nums[high] <= pivot)high--;nums[low] = nums[high];while (low < high && nums[low] >= pivot)low++;nums[high] = nums[low];}//low(或者right)就是这趟排序中枢轴元素的最终位置nums[low] = pivot;if (low == k - 1) {return pivot;} else if (low > k - 1) {return quickSortFindK(nums, left, low - 1, k);} else {return quickSortFindK(nums, low + 1, right, k);}}
}

 

快速排序的最好时间复杂度是O(nlogn),最坏时间复杂度为O(n^2),平均时间复杂度为O(nlogn)

快速排序在元素有序的情况下效率是最低。

不过可以通过在某些情况下,快速排序可以达到期望为线性的时间复杂度,即O(n),也就是在每次排序前随机的交换两个元素(个人理解可能是为了让元素变乱,不那么有序,越乱越快,算法导论中在9.2 期望为线性的选择算法进行了证明,还没有学习,先在此记录下),它的时间代价的期望是 O(n)

具体代码实现,就是在排序前,加上下面的代码

//随机生成一个位置,该位置的范围为[left,right]
//然后将该位置的元素与最后一个元素进行交换,让数组变得不那么有序,
//放置出现有序的情况下快排的时间复杂度退化为o(n^2)
int randomIndex = random.nextInt(right - left + 1) + left;
int tem = nums[randomIndex];
nums[randomIndex] = nums[right];
nums[right] = tem;

AC代码:

class Solution {static Random random = new Random();public static int findKthLargest(int[] nums, int k) {return quickSortFindK(nums, 0, nums.length - 1, k);}public static int quickSortFindK(int[] nums, int left, int right, int k) {int randomIndex = random.nextInt(right - left + 1) + left;int tem = nums[randomIndex];nums[randomIndex] = nums[right];nums[right] = tem;int pivot = nums[left];int low = left;int high = right;while (low < high) {while (low < high && nums[high] <= pivot)high--;nums[low] = nums[high];while (low < high && nums[low] >= pivot)low++;nums[high] = nums[low];}nums[low] = pivot;if (low == k - 1) {return pivot;} else if (low > k - 1) {return quickSortFindK(nums, left, low - 1, k);} else {return quickSortFindK(nums, low + 1, right, k);}}
}

时间上确实有了一些提升

解法二:堆排序。

建立小根堆,最后让小根堆里的元素个数保持在k个,那么此时栈顶的元素就是k个元素中最小的,即第k大的元素

可以通过优先级队列来模拟小根堆

AC代码

class Solution {public int findKthLargest(int[] nums, int k) {PriorityQueue<Integer> queue = new PriorityQueue<>();for (int num : nums) {//已经有k个元素了,当前元素比堆顶元素还小,不可能是第k大的元素,跳过if (queue.size()==k&&queue.peek()>=num){continue;}queue.offer(num);}while (queue.size()>k){queue.poll();}return queue.peek();}
}

解法三:大根堆

  1. 对于区间[0,n]建立大根堆后,此时堆顶元素nums[0]为最大值,可以将堆顶元素与最后一个元素交换,即将最大值移动到数组最后,
  2. 然后将[0,n-1]区间调整为大根堆,此时堆顶nums[0]就是第二大的值,将堆顶元素与倒数第二个元素交换,即倒数第二大的值移动到数组倒数第二个位置
  3. 然后将[0,n-2]区间调整为大根堆...
  4. 调整 k-1此后的大根堆,此时的堆顶元素就是第k大的元素

大根堆可以使用优先级队列实现,传递一个降序的比较器。

这里复习下堆排序,手动写了一个大根堆

AC代码:

class Solution {public static int findKthLargest(int[] nums, int k) {createHeap(nums);for (int i = nums.length - 1; i > nums.length - k; i--) {int tem = nums[0];nums[0] = nums[i];nums[i] = tem;heapAdjust(nums, 0, i - 1);}return nums[0];}//建初堆public static void createHeap(int[] nums) {for (int i = nums.length / 2 - 1; i >= 0; i--) {heapAdjust(nums, i, nums.length-1);}}/*调整成大根堆nums[begin+1,end]已经是大根堆,将nums[begin,end]调整为以nums[begin]为根的大根堆*/public static void heapAdjust(int[] nums, int begin, int end) {int tem = nums[begin];for (int i = 2 * begin + 1; i <= end; i = i * 2 + 1) {if (i+1 <= end && nums[i] < nums[i+1])//j为左右子树中较大的子树的下标i++;//tem大于左右子树,已经是大根堆,退出if (tem >= nums[i])break;nums[begin] = nums[i];//更新待插入的位置begin = i;}//tem应该存放的位置nums[begin] = tem;}
}

http://www.lryc.cn/news/110749.html

相关文章:

  • Ubuntu18.04配置ZED_SDK 4.0, 安装Nvidia显卡驱动、cuda12.1
  • 张量Tensor 深度学习
  • 用Rust实现23种设计模式之桥接模式
  • 扩散模型实战(一):基本原理介绍
  • 解决npm ERR! code ERESOLVE -npm ERR! ERESOLVE could not resolve
  • HttpServletRequest和HttpServletResponse的获取与使用
  • css在线代码生成器
  • 在java中如何使用openOffice进行格式转换,word,excel,ppt,pdf互相转换
  • 手机变电脑2023之虚拟电脑droidvm
  • HDFS中的sequence file
  • 【MySQL】检索数据使用数据处理函数
  • 【嵌入式学习笔记】嵌入式入门6——定时器TIMER
  • GD32F103输入捕获
  • [RT-Thread]基于ARTPI的文件系统认识与搭建
  • 动态规划+二分查找
  • 8.2小非农ADP数据来袭黄金将会如何表现?
  • linux启动oracle
  • AssetBundleBrowser导入报错解决方案
  • vue-baidu-map-3x 使用记录
  • 《GPU并行计算与CUDA编程》笔记
  • Shell编程基础(十二)函数
  • 【雕爷学编程】MicroPython动手做(33)——物联网之天气预报3
  • Screens 4 for mac VNC客户端 强大的远程控制工具
  • 搜索与图论(三)
  • 阿里云“通义千问”开源,可免费商用
  • 23.7.31 牛客暑期多校5部分题解
  • Python爬虫的学习day02 requests 模块post 函数, lmxl 模块的 etree 模块
  • 客户流失分析预测案例 -- 机器学习项目基础篇(7)
  • uniapp中我使用uni.navigateTo跳转webview页面传参,但是接收的参数只有一半。
  • 使用kaminari,在列表页实现分页功能