当前位置: 首页 > news >正文

第三章 图论 No.4最小生成树的简单应用

文章目录

      • 裸题:1140. 最短网络
      • 裸题:1141. 局域网
      • 裸题:1142. 繁忙的都市
      • 裸题:1143. 联络员
      • 有些麻烦的裸题:1144. 连接格点

存在边权为负的情况下,无法求最小生成树

image.png

裸题:1140. 最短网络

1140. 最短网络 - AcWing题库
image.png
套个prim的板子即可

#include <iostream>
#include <cstring>
using namespace std;const int N = 110, INF = 0x3f3f3f3f;
int g[N][N];
int dis[N]; bool st[N];
int n;int prim()
{memset(dis, 0x3f, sizeof(dis));int res = 0;for (int i = 0; i < n; ++ i ){int x = -1;for (int j = 1; j <= n; ++ j ) if (!st[j] && (x == -1 || dis[x] > dis[j])) x = j;st[x] = true;if (i && dis[x] == INF) return INF;if (i) res += dis[x];for (int y = 1; y <= n; ++ y )dis[y] = min(dis[y], g[x][y]);}return res;
}int main()
{scanf("%d", &n);for (int i = 1; i <= n; ++ i )for (int j = 1; j <= n; ++ j )scanf("%d", &g[i][j]);printf("%d\n", prim());return 0;
}

裸题:1141. 局域网

1141. 局域网 - AcWing题库
image.png

裸题,稀疏图,套个kruskal的板子就行
需要注意的是:题目给定的图可能存在多个连通块,若使用prim算法,需要对每个连通块求最小生成树,但是使用kruskal能直接求出所有连通块的最小生成树

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;const int N = 110, M = 210;
struct Edge
{int x, y, w;bool operator<(const Edge& e) const {return w < e.w;}
}edges[M];int p[N];
int n, m;int find(int x)
{if (x != p[x]) p[x] = find(p[x]);return p[x];
}int kruskal()
{sort(edges, edges + m);for (int i = 1; i <= n; ++ i ) p[i] = i;int cnt = 0, res = 0;for (int i = 0; i < m; ++ i ){auto t = edges[i];int x = edges[i].x, y = edges[i].y, w = edges[i].w;x = find(x), y = find(y);if (x != y){cnt ++ ;res += w;p[x] = y;}}return res;
}int main()
{scanf("%d%d", &n, &m);for (int i = 0; i < m; ++ i )scanf("%d%d%d", &edges[i].x, &edges[i].y, &edges[i].w);int sum = 0;for (int i = 0; i < m; ++ i ) sum += edges[i].w;printf("%d\n", sum - kruskal());return 0;
}

裸题:1142. 繁忙的都市

1142. 繁忙的都市 - AcWing题库
依然是套kruskal的板子
image.png

#include <iostream>
#include <algorithm>
using namespace std;const int N = 310 ,M = 8010;
struct Edge
{int x, y, w;bool operator<(const Edge& e) const{return w < e.w;}
}edges[M];int n, m;
int p[N];int find(int x)
{if (x != p[x]) p[x] = find(p[x]);return p[x];
}int kruskal()
{sort(edges, edges + m);int res = 0;for (int i = 1; i <= n; ++ i ) p[i] = i;for (int i = 0; i < m; ++ i ){auto t = edges[i];int x = t.x, y = t.y, w = t.w;x = find(x), y = find(y);if (x != y){res = max(res, w);p[x] = y;}}return res;
}int main()
{scanf("%d%d", &n, &m);for (int i = 0; i < m; ++ i )scanf("%d%d%d", &edges[i].x, &edges[i].y, &edges[i].w);printf("%d %d\n", n - 1, kruskal());return 0;
}

裸题:1143. 联络员

1143. 联络员 - AcWing题库
image.png

添加所有必选的边,维护并查集,然后再对非必选的边做kruskal


#include <iostream>
#include <algorithm>
using namespace std;const int N = 2010, M = 10010;
struct Edge
{int x, y, w;bool operator<(const Edge& e) const {return w < e.w;}
}edges[M];int n, m, cnt;
int p[N];int find(int x)
{if (x != p[x]) p[x] = find(p[x]);return p[x];
}int kruskal()
{int res = 0;for (int i = 0; i < cnt; ++ i ){auto t = edges[i];int x = t.x, y = t.y, w = t.w;x = find(x), y = find(y);if (x != y){res += w;p[x] = y;}}return res;
}int main()
{scanf("%d%d", &n, &m);for (int i = 1; i <= n; ++ i ) p[i] = i;int t, x, y, d;int res = 0;while ( m -- ){scanf("%d%d%d%d", &t, &x, &y, &d);if (t == 1){x = find(x), y = find(y);if (x != y) p[x] = y;res += d;}else{edges[cnt].x = x, edges[cnt].y = y, edges[cnt].w = d;cnt ++ ;}}sort(edges, edges + cnt);res += kruskal();printf("%d\n", res);return 0;
}

有些麻烦的裸题:1144. 连接格点

1144. 连接格点 - AcWing题库
image.png

点阵为图中的点,将二维坐标转换成一维,作为点的编号
添加已有连线后,做kruskal即可

#include <iostream>
#include <algorithm>
using namespace std;const int N = 1010;
struct Edge
{int x, y, w;bool operator<(const Edge& e) const {return w < e.w;}
}edges[2 * N * N];int n, m, cnt = 1;
int p[N * N];
int g[N][N]; // 二维到一维
int dx[3] = { 0, 1, 0 }, dy[3] = { 0, 0, 1 };int find(int x)
{if (x != p[x]) p[x] = find(p[x]);return p[x];
}int kruskal()
{int res = 0;for (int i = 0; i < cnt; ++ i ){auto t = edges[i];int x = t.x, y = t.y, w = t.w;x = find(x), y = find(y);if (x != y){res += w;p[x] = y;}}return res;
}int main()
{scanf("%d%d", &n, &m);for (int i = 1; i <= n; ++ i )for (int j = 1; j <= m; ++ j )g[i][j] = cnt ++ ;for (int i = 1; i < cnt; ++ i ) p[i] = i;int x1, x2, y1, y2;while (~scanf("%d%d%d%d", &x1, &y1, &x2, &y2)){int x = g[x1][y1], y = g[x2][y2];x = find(x), y = find(y);if (x != y) p[x] = y;}cnt = 0;for (int i = 1; i <= n; ++ i )for (int j = 1; j <= m; ++ j )for (int k = 1; k <= 2; ++ k ){int a = i + dx[k], b = j + dy[k];if (a >= 1 && a <= n && b >= 1 && b <= m){int x = g[i][j], y = g[a][b];edges[cnt ++ ] = { x, y, k };}}sort(edges, edges + cnt);printf("%d\n", kruskal());return 0;
}

debug:n * m的矩阵中,相邻两点之间存在一条边,那么矩阵中的边数应该为m(n-1) + n(m-1),大概就是2 * n * n,数组开小了导致SF
尽量不要在for循环中定义除了循环变量之外的变量

image.png
需要注意的是,200万条边进行排序会消耗很多时间,由于边的权值只有1和2,所以可以先添加权值为1的边,再添加权值为2的边

http://www.lryc.cn/news/110512.html

相关文章:

  • 微服务-nacos配置管理
  • 【开发问题】flink的sql任务,用命令行执行
  • Git常见问题
  • Android如何实现开机自启
  • Java数组实现的简单点名器
  • 百度UEditor编辑器如何关闭抓取远程图片功能
  • 网站无法访问的常见原因
  • (树) 剑指 Offer 34. 二叉树中和为某一值的路径 ——【Leetcode每日一题】
  • HDFS集群滚动升级以及回滚相关
  • 【LeetCode】094. 分割回文串II
  • CBCGPRibbon 添加背景图片
  • 无涯教程-Perl - last 语句函数
  • 网络安全 Day13-Linux三剑客awk知识
  • java讲解Spring Boot配置文件级别 相互覆盖关系 解决一方不愿意给数据库密码 一方不愿意给源码时 数据库配置问题
  • 点击表格行高亮
  • 基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
  • 零代码爬虫平台SpiderFlow的安装
  • Java 与其他编程语言:比较分析
  • Linux性能分析工具介绍(二)--内存、进程、磁盘、IO分析
  • 海外热门地区/国家常见主体证件示例
  • 【阵列信号处理】空间匹配滤波器、锥形/非锥形最佳波束成形器、样本矩阵反演 (SMI) 研究(Matlab代码实现)
  • 使用MPU6050计算方向盘角度
  • 区块链实验室(13) - 在PBFT中节点的度与其流量的特征
  • C++——文件操作
  • channel通道笔记
  • 无涯教程-Lua - 面向对象
  • Java中的IOUtils是什么?
  • 电源板(220V转3.3V)调试问题总
  • 【webpack】一些零碎的知识点记录:eslint配置、source-map配置、devServer配置
  • VUE之JWT前后端分离认证,学生管理系统